3D printing of patterned membranes opens door to rapid advances in membrane technology

Penn State Materials Research Institute via Science Daily:  A new type of 3D printing developed by researchers at Penn State will make it possible for the first time to rapidly prototype and test polymer membranes that are patterned for improved performance. Ion exchange membranes are used in many types of energy applications, such as fuel cells and certain batteries, as well as in water purification, desalination, removal of heavy metals and food processing. Most ion exchange membranes are thin, flat sheets similar to the plastic wrap in your kitchen drawer. However, recent work has shown that by creating 3D patterns on top of the 2D membrane surface, interesting hydrodynamic properties emerge that can improve ion transport or mitigate fouling, a serious problem in many membrane applications. Currently, making these patterned membranes, also called profiled membranes, involves a laborious process of etching a silicon mold with the desired pattern, pouring in the polymer and waiting until it hardens. The process is both time-consuming and expensive, and results in a single pattern type. “We thought if we could use 3D printing to fabricate our custom-synthesized ion exchange membranes, we could make any sort of pattern and we could make it quickly,” says Michael Hickner, associate professor of materials science and engineering at Penn State.   Cont'd...

Bosch Rexroth launches Industry 4.0 training rigs

The Engineer:  Bosch Rexroth has launched a new range of training rigs designed to help students get up to speed with the internet of things (IoT) and Industry 4.0. The rigs will form part of the company’s Drive & Control Academy programme and are built with industry-grade components. Aimed specifically at educational and industrial institutions, the rigs are tailored towards students and teachers as well as customers and employees, designed to assist with the adoption of Industry 4.0 practices. According to Bosch Rexroth, the modular hydraulic, pneumatic and mechatronic systems simulate a complete production process, combining several elements that can be operated individually or together. The physical rigs are accompanied by corresponding exercises, eLearning, project manuals and other supporting material. “The launch of our new training rigs offering is market leading and aims to provide the younger generation with a better understanding in the future of manufacturing,” said Richard Chamberlain, product manager service at Bosch Rexroth. “We firmly believe our industry grade training rigs will equip students with the ability to stay ahead of the curve. Our course material helps guide trainees through consecutive steps that build on one another, which means motivation remains high.”   Cont'd...

New dual-step method provides 3D printing of conductive metals.

Shalini Saxena for ArsTechnica:  Customizable, wearable electronics open the door to things like heart-monitoring t-shirts and health-tracking bracelets. But placing the needed wiring in a complex 3D architecture has been hard to do cheaply. Existing approaches are limited by material requirements and, in the case of 3D writing, slow printing speeds. Recently, a research team at Harvard University developed a new method to rapidly 3D print free-standing, highly conductive, ductile metallic wires. The new method combines 3D printing with focused infrared lasers that quickly anneal the printed nanoparticles into the desired architecture. The result is a wire with an electrical conductivity that approaches that of bulk silver.   Cont'd...

Foxconn Replaces 60,000 Labourers With Robots in China

Subhrojit Mallick  for GIZMODO India:   Apple and Samsung phone manufacturer, Foxconn has already taken a step towards the dystopian future. The South China Morning Post reported the manufacturing giant has replaced 60,000 laborers with robots. The total strength of Foxconn factory workers reduced from 110,000 to 50,000, marking a huge shift towards automation of routine jobs.  The Foxconn technology group confirmed to the BBC that they are automating many of the manufacturing tasks associated with their operations by introducing robots. However, they maintained the move will not affect long-term job losses.    Cont'd...

The Biggest Challenges of Data-Driven Manufacturing

Willy C. Shih and Helmuth Ludwig for Harvard Business Review:  The widespread deployment of low-cost sensors and their connection to the internet has generated a great deal of excitement (and hype) about the future of manufacturing. The internet of things (IoT) and industrial internet in the United States, Industrie 4.0 in Germany, and 物"网 (wù lián wăng) in China are all centered on the application of big data and analytics to creating the next generation of manufacturing: using data to reduce costs through next generation sales and operations planning, dramatically improved productivity, supply chain and distribution optimization, and new types of after-sales services. In fact, IoT is at the peak of Gartner’s 2015 hype cycle, which suggests the next phase will be disillusionment, and it will be years before we see real productivity gains. We believe data-driven manufacturing is indeed the next wave that will drive efficient and responsive production systems. But to get beyond the hype, managers need to understand some underlying challenges and paradigm shifts. While there are a multitude of challenges on the road to successful implementation, we think there are four especially important ones.   Cont'd...

China's Big Bid For Germany's Industry 4.0 Technology

Klaus E. Meyer for Forbes:  Midea, the Chinese household appliances (“white goods”) manufacturer just made what analysts called an ‘incredibly high’ bid for German robot maker Kuka. This acquisition would take the Chinese investor right to the heart of Industry 4.0 : Kuka is a leading manufacturer of multifunctional robots that represent an important building block for enterprises upgrading their factories with full automation, the latest human-machine interface functionality, and machine-to-machine communication. Midea want a 30% stake in Kuka and have offered €115 per share. Kuka’s shares traded at €84 the day before and had already increased 60% since the beginning of the year. This offer values Kuka at €4.6 billion, which means Midea’s 30% stake would be worth €1.4 billion – on par with Beijing Enterprise’s February 2016 takeover of recycling company EEW which was the largest Chinese acquisition of a German firm to-date. Midea’s takeover bid underscores Chinese interest in German Industry 4.0 technology; in January 2016, ChemChina paid €925 million for Munich-based KraussMaffei machine tools, in part because of their advances into Industry 4.0. Recent smaller Chinese acquisitions in the German machine tool industry, which include the partial acquisitions of H.Stoll by the ShangGong Group and of Manz by the Shanghai Electric Group are, in part, motivated by the objective to partake in the latest Industry 4.0 developments.   Cont'd...

RAPID 2016 - HP begins selling its Jet Fusion 3D printer; says it's 50% cheaper, 10X faster than others

Lucas Mearian for ComputerWorld:  Hewlett-Packard today began taking orders for its first 3D printer, the HP Jet Fusion printer, which it said will be up to 10 times faster than existing machines and can cut the cost of manufacturing parts in half. At the RAPID 3D additive manufacturing conference here, HP revealed two models:  the lower-cost and lower production 3200 series and the 4200 series, for which it is now taking orders. The 4200 series will begin shipping to manufacturers in October; the 3200 series will be available in mid-2017. HP originally unveiled its Jet Fusion printer in October 2014. HP claims its printer will enable mass production of parts through additive manufacturing (3D printing), instead of just rapid prototyping, for which the technology  is typically used. The printers are unlikely to be used to produce millions or billions of production parts; think, instead, in terms of hundreds, thousands or tens of thousands of parts, HP said.   Cont'd...

German manufacturers take aim at smart factories, mass customization

TOMOHISA TAKEI, Nikkei staff writer:  It has been five years since Industry 4.0, the fourth industrial revolution, was first unveiled at the Hannover Messe industrial technology trade fair in Germany.      Industry 4.0 was more of a conceptual model at that time. This year, however, the trade show witnessed an emerging trend toward "smart factories" that can provide mass customization.      On April 25, SEW-Eurodrive's booth at Hannover Messe drew crowds of visitors. The German industrial motor maker demonstrated its automated vehicles for next-generation assembly plants, what it calls the "Lean Smart Factory."      In SEW-Eurodrive's demonstration, about 10 such "smart vehicles" moved about as five workers assembled products. One vehicle approached its target worker, displayed a procedure on its screen and instructed the worker to do the assembly work. After the worker completed the task, the vehicle received the product and moved on to another worker in charge of the next process.      These smart vehicles were connected over a network and programmed at the company factory. But it looked as if the products themselves were driving the vehicles and moved to where the tasks needed to be done. SEW-Eurodrive has already introduced the system at its factory in the southwestern German town of Graben-Neudorf, intending to make individually tailored products in the future.   Cont'd...

Hannover Messe showcases Industry 4.0 innovations

By Mike Bacidore, editor in chief for Control Design:  How are you getting your share of the pie that is the $227 quadrillion Industrial Internet of Things (IIoT)? That’s a lot of money, and there’s plenty to go around, so what are you doing to cash in on this next industrial revolution? OK, to be fair, I made up that number. But, unless you’re a research analyst or someone putting together Q3 forecasts for your business unit, you didn’t even give that number a second thought. And you probably shouldn’t. It doesn’t really matter. That number is as justifiable as it is arbitrary. Just pick an amount and then create a scenario and a timetable you can defend. “If you torture data long enough, it will confess,” Ronald Coase once said. The famed British economist also believed that the study of real-world markets was much preferred to speculating on theoretical ones. In reality, this bold new landscape of connectivity has yielded opportunities for revenue streams steered by embankments of innovation. Nowhere was that more evident than at Hannover Messe in Germany, where Industry 4.0—the preferred European term, which includes IIoT, cyberphysical systems and more—was impossible to avoid and insistent in its resolve.   Cont'd...

These Five Exponential Trends Are Accelerating Robotics

Alison E. Berman for Singularity Hub:   If you've been staying on top of artificial intelligence news lately, you may know that the games of chess and Go were two of the grand challenges for AI. But do you know what the equivalent is for robotics? It's table tennis. Just think about how the game requires razor sharp perception and movement, a tall order for a machine. As entertaining as human vs. robot games can be, what they actually demonstrate is much more important. They test the technology's readiness for practical applications in the real world—like self-driving cars that can navigate around unexpected people in a street. Though we used to think of robots as clunky machines for repetitive factory tasks, a slew of new technologies are making robots faster, stronger, cheaper, and even perceptive, so that they can understand and engage with their surrounding environments. Consider Boston Dynamic’s Atlas Robot, which can walk through snow, move boxes, endure a hefty blow with a hockey stick by an aggressive colleague, and even regain its feet when knocked down. Not too long ago, such tasks were unthinkable for a robot. At the Exponential Manufacturing conference, robotics expert and director of Columbia University’s Creative Machine Labs, Hod Lipson, examined five exponential trends shaping and accelerating the future of the robotics industry.    Cont'd...

Inside the Gigafactory That Will Decide Tesla's Fate

From Bloomberg: To get to Tesla’s Gigafactory, you drive east from Reno, Nevada, turn into a sprawling industrial center, and make a left on Electric Avenue. The high desert landscape dwarfs everything, even the vast white building with the red stripe along the top. As you reach the gate with the security guard, the breadth of Tesla’s ambitions becomes clear. Even the name itself suggests more to come: Gigafactory 1... ...The $5 billion Gigafactory was born of necessity. Tesla needs a hell of a lot of batteries, for both the forthcoming mass-market Model 3 sedan and the Tesla Energy product line. The timeline for getting those batteries made just became much shorter, too. On Wednesday, Tesla Chief Executive Elon Musk stunned investors by announcing a sped-up production schedule that calls for a half-million electric vehicles per year by 2018, not the previously stated goal of 2020. For a company that delivered just 50,658 vehicles in 2015, the ramp looks like a hockey stick... (full story)

Three ways to leverage IIoT

Scott Stone for Plant Engineering:  The Internet of Things (IoT) will significantly alter manufacturing, transportation, distribution and other industrial sectors over the next decade, according to the World Economic Forum. We've only hit the tip of the iceberg in terms of the ways Internet-connected devices will transform these industrial sectors. To put a number on the anticipated growth of Industrial Internet of Things (IIoT) over the next few years, Accenture places conservative spending estimates at $500 billion worldwide by 2020. Forward-thinking businesses are already leveraging the power of the IIoT and reaping the benefits. When used effectively, it allows companies to better manage their operation, increase production and transform business for the better. Let's take a look at how industrial organizations should be harnessing IIoT to set their businesses up for future growth.   Cont'd...

The MakerBot Obituary

From Brian Benchoff at Hackaday:   MakerBot is not dead, but it is connected to life support waiting for a merciful soul to pull the plug.  This week, MakerBot announced it would lay off its entire manufacturing force, outsourcing the manufacturing of all MakerBot printers to China. A few weeks ago, Stratasys, MakerBot’s parent company, released their 2015 financial reports, noting MakerBot sales revenues have fallen precipitously. The MakerBot brand is now worth far less than the $400 Million Stratasys spent to acquire it. MakerBot is a dead company walking, and it is very doubtful MakerBot will ever be held in the same regard as the heady days of 2010. How did this happen? The most common explanation of MakerBot’s fall from grace is that Stratasys gutted the engineering and goodwill of the company after acquiring it. While it is true MakerBot saw its biggest problems after the acquisition from Stratasys, the problems started much earlier... (full article) (fist hand account from Isaac Anderson)

Disney files patent for near instantaneous 3D printing

Lucas Mearian for ComputerWorld:  Disney Research has filed a patent for a 3D printing technology that uses high-intensity light to harden photo-sensitive resin in a single process, removing the need for layer-by-layer printing. The patent describes a machine for printing in "a nearly instantaneous manner." "Presently, 3D printing is extremely slow and time consuming. For example, it may take several hours to print a single 3D object even if the 3D object is relatively small (e.g., several inches in diameter and four to 12 inches tall)," Disney stated in its patent filing. "The 3D printing process that uses conventional 3D printers ... is limited in its speed by the speed of the mechanism moving the print head to each new position on a print layer."   Cont'd...

Examining 'Industry 4.0′ opportunities in Japan

MINORU MATSUTANI for Japan Times:   “Industry 4.0,” or the fourth industrial revolution, can offer both opportunities and risks for the Japanese economy. It is a term to describe the future state of the economy, particularly manufacturing, based on the connectivity of everything, or the “Internet of Things” (IoT). This connectivity includes not only PCs and mobile phones, but also cars, manufacturing equipment and other devices. Although Japan is said to lag behind other developed nations, a recent gathering discussed whether the country could thrive in this new economy. A consultant, an IT service company president, an employee of the same company and a university professor, all of whom are Japanese, delivered presentations and discussed related issues at a symposium organized by the Keizai Koho Center, titled “The Future of Industry (Industry 4.0) and Japan’s Economic Growth,” in Tokyo on March 18.   Full Article:

Records 361 to 375 of 508

First | Previous | Next | Last

Featured Product

Stäubli TX2-60 Industrial Robot

Stäubli TX2-60 Industrial Robot

TX2 robots: redefining performance by offering collaborative safety and high performance in a single machine. These pioneering robots can be used in all areas, including sensitive and restrictive environments, thanks to their unique features. Safety functions are easy and inexpensive to implement. They allow a higher level of interactions between robots and human operators, while still guaranteeing protection of your people, production and investment.