FIRST 3D TOOLS PRINTED ABOARD SPACE STATION

Evan Gough for UniverseToday:  Astronauts aboard the International Space Station have manufactured their first tool using the 3D printer on board the station. This is another step in the ongoing process of testing and using additive manufacturing in space. The ability to build tools and replacement parts at the station is something NASA has been pursuing keenly. The first tool printed was a simple wrench. This may not sound like ground-breaking stuff, unless you’ve ever been in the middle of a project only to find you’re missing a simple tool. A missing tool can stop any project in its tracks, and change everybody’s plans. The benefits of manufacturing needed items in space are obvious. Up until now, every single item needed on the ISS had to be sent up via re-supply ship. That’s not a quick turnaround. Now, if a tool is lost or destroyed during normal use, a replacement can be quickly manufactured on-site.   Cont'd...

Midea makes bid for robotics maker Kuka official

DW.com:  Chinese appliance firm Midea has announced it has launched a cash offer for a stake of 30 percent in German industrial robotics supplier Kuka. The takeover bid has stoked controversy in Germany and Europe. Midea said on Thursday it would offer 115 euros ($130) per share to Kuka owners under efforts to become the biggest single shareholder in one of the world's leading manufacturers of industrial robots. The Chinese appliance maker, which is so far only known to be producing washing machines and air conditioners, also said its offer would end July 15, with no ceiling on the percentage of shares it was aiming to buy.  Kuka shares closed at just above 106 euros in trading at the Frankfurt Stock Exchange on Wednesday. The stock gained about 26 percent since the deal was first proposed in May.   Cont'd...

MIT Food Computers

From MIT:   The Food Computer is a controlled-environment agriculture technology platform that uses robotic systems to control and monitor climate, energy, and plant growth inside of a specialized growing chamber. Climate variables such as carbon dioxide, air temperature, humidity, dissolved oxygen, potential hydrogen, electrical conductivity, and root-zone temperature are among the many conditions that can be controlled and monitored within the growing chamber. Operational energy, water, and mineral consumption are monitored (and adjusted) through electrical meters, flow sensors, and controllable chemical dosers throughout the growth period. Each specific set of conditions can be thought of as a climate recipe, and each recipe produces unique results in the phenotypes of the plants. Plants grown under different conditions may vary in color, size, texture growth rate, yield, flavor, and nutrient density. Food Computers can even program biotic and abiotic stresses, such as an induced drought, to create desired plant-based expressions... (project homepage)

How Big Area Additive Manufacturing is Enabling Automotive Microfactories

Ian Wright for Engineering.com:  Make no mistake, 3D printing is changing manufacturing. Although it may take years before we see the full impact of bringing this technology from rapid prototyping to full-scale production, there are already hints of big things to come. Take Local Motors’ recent purchase of two Big Area Additive Manufacturing (BAAM) systems from Cincinnati Incorporated (CI) as an example. The former company designs, builds and sells custom vehicles out of its US-based microfactories. The latter is a century-old manufacturer of metal fabrication tools and, more recently, BAAM.   Cont'd...

Computational Hydrographic Printing

From Yizhong Zhang, Chunji Yin, Changxi Zheng, Kun Zhou's paper:   Hydrographic printing is a well-known technique in industry for transferring color inks on a thin film to the surface of a manufactured 3D object. It enables high-quality coloring of object surfaces and works with a wide range of materials, but suffers from the inability to accurately register color texture to complex surface geometries. Thus, it is hardly usable by ordinary users with customized shapes and textures. We present computational hydrographic printing, a new method that inherits the versatility of traditional hydrographic printing, while also enabling precise alignment of surface textures to possibly complex 3D surfaces. In particular, we propose the first computational model for simulating hydrographic printing process. This simulation enables us to compute a color image to feed into our hydrographic system for precise texture registration. We then build a physical hydrographic system upon off-the-shelf hardware, integrating virtual simulation, object calibration and controlled immersion. To overcome the difficulty of handling complex surfaces, we further extend our method to enable multiple immersions, each with a different object orientation, so the combined colors of individual immersions form a desired texture on the object surface. We validate the accuracy of our computational model through physical experiments, and demonstrate the efficacy and robustness of our system using a variety of objects with complex surface textures...  (full paper)

Carnegie Mellon Taps Private Gift for Engineering Simulation Center

Dian Schaffhauser for Campus Technology:  Carnegie Mellon University has launched a new collaboration with Ansys, a global company that produces software for engineering simulation. Under the terms of the agreement, the company will endow a new "Ansys Career Development Chair" in the College of Engineering and help fund a new building dedicated to the study of Industry 4.0. That facility will bring together faculty, students, researchers and corporate participants. Industry 4.0 is the name given to a movement that uses sensor, robotic, simulation and other innovative technologies to shrink development cycles and transform product design, development and manufacturing. The new 30,000 square foot facility, which will be known as the Ansys Building, is intended to expand the "making" capabilities of the college by adding a simulation and collaboration lab and a large open bay facility for undergraduate students to build full-scale projects. That open bay facility will be next door to the fabrication and machining facilities of the Hamerschlag Hall MakerWing, announced in December, where students will be able to make their components and then assemble them into larger systems.   Cont'd...

How Small Manufacturers Can Leverage Smart Manufacturing

Andrew Waycott for Industry Week:  I see three ways in which smaller manufacturers can leverage Smart Manufacturing.  The first is the way applicable to all manufacturers—using today’s affordable sensors to get better data, then using that data to fine-tune the process, decrease variability and remove bottlenecks. All of these bring costs down and drive quality up. Now let’s talk about the other two ways—ways that are specific to the smaller manufacturer. Smaller manufacturers have the edge in building volumes of one—in other words, customized orders. For many smaller manufacturers, the look is less assembly line and more set of work stations. This means that the operator in a smaller plant typically makes more decisions. It’s a more people-oriented process.   Cont'd...

3D printing of patterned membranes opens door to rapid advances in membrane technology

Penn State Materials Research Institute via Science Daily:  A new type of 3D printing developed by researchers at Penn State will make it possible for the first time to rapidly prototype and test polymer membranes that are patterned for improved performance. Ion exchange membranes are used in many types of energy applications, such as fuel cells and certain batteries, as well as in water purification, desalination, removal of heavy metals and food processing. Most ion exchange membranes are thin, flat sheets similar to the plastic wrap in your kitchen drawer. However, recent work has shown that by creating 3D patterns on top of the 2D membrane surface, interesting hydrodynamic properties emerge that can improve ion transport or mitigate fouling, a serious problem in many membrane applications. Currently, making these patterned membranes, also called profiled membranes, involves a laborious process of etching a silicon mold with the desired pattern, pouring in the polymer and waiting until it hardens. The process is both time-consuming and expensive, and results in a single pattern type. “We thought if we could use 3D printing to fabricate our custom-synthesized ion exchange membranes, we could make any sort of pattern and we could make it quickly,” says Michael Hickner, associate professor of materials science and engineering at Penn State.   Cont'd...

Bosch Rexroth launches Industry 4.0 training rigs

The Engineer:  Bosch Rexroth has launched a new range of training rigs designed to help students get up to speed with the internet of things (IoT) and Industry 4.0. The rigs will form part of the company’s Drive & Control Academy programme and are built with industry-grade components. Aimed specifically at educational and industrial institutions, the rigs are tailored towards students and teachers as well as customers and employees, designed to assist with the adoption of Industry 4.0 practices. According to Bosch Rexroth, the modular hydraulic, pneumatic and mechatronic systems simulate a complete production process, combining several elements that can be operated individually or together. The physical rigs are accompanied by corresponding exercises, eLearning, project manuals and other supporting material. “The launch of our new training rigs offering is market leading and aims to provide the younger generation with a better understanding in the future of manufacturing,” said Richard Chamberlain, product manager service at Bosch Rexroth. “We firmly believe our industry grade training rigs will equip students with the ability to stay ahead of the curve. Our course material helps guide trainees through consecutive steps that build on one another, which means motivation remains high.”   Cont'd...

New dual-step method provides 3D printing of conductive metals.

Shalini Saxena for ArsTechnica:  Customizable, wearable electronics open the door to things like heart-monitoring t-shirts and health-tracking bracelets. But placing the needed wiring in a complex 3D architecture has been hard to do cheaply. Existing approaches are limited by material requirements and, in the case of 3D writing, slow printing speeds. Recently, a research team at Harvard University developed a new method to rapidly 3D print free-standing, highly conductive, ductile metallic wires. The new method combines 3D printing with focused infrared lasers that quickly anneal the printed nanoparticles into the desired architecture. The result is a wire with an electrical conductivity that approaches that of bulk silver.   Cont'd...

Foxconn Replaces 60,000 Labourers With Robots in China

Subhrojit Mallick  for GIZMODO India:   Apple and Samsung phone manufacturer, Foxconn has already taken a step towards the dystopian future. The South China Morning Post reported the manufacturing giant has replaced 60,000 laborers with robots. The total strength of Foxconn factory workers reduced from 110,000 to 50,000, marking a huge shift towards automation of routine jobs.  The Foxconn technology group confirmed to the BBC that they are automating many of the manufacturing tasks associated with their operations by introducing robots. However, they maintained the move will not affect long-term job losses.    Cont'd...

The Biggest Challenges of Data-Driven Manufacturing

Willy C. Shih and Helmuth Ludwig for Harvard Business Review:  The widespread deployment of low-cost sensors and their connection to the internet has generated a great deal of excitement (and hype) about the future of manufacturing. The internet of things (IoT) and industrial internet in the United States, Industrie 4.0 in Germany, and 物"网 (wù lián wăng) in China are all centered on the application of big data and analytics to creating the next generation of manufacturing: using data to reduce costs through next generation sales and operations planning, dramatically improved productivity, supply chain and distribution optimization, and new types of after-sales services. In fact, IoT is at the peak of Gartner’s 2015 hype cycle, which suggests the next phase will be disillusionment, and it will be years before we see real productivity gains. We believe data-driven manufacturing is indeed the next wave that will drive efficient and responsive production systems. But to get beyond the hype, managers need to understand some underlying challenges and paradigm shifts. While there are a multitude of challenges on the road to successful implementation, we think there are four especially important ones.   Cont'd...

China's Big Bid For Germany's Industry 4.0 Technology

Klaus E. Meyer for Forbes:  Midea, the Chinese household appliances (“white goods”) manufacturer just made what analysts called an ‘incredibly high’ bid for German robot maker Kuka. This acquisition would take the Chinese investor right to the heart of Industry 4.0 : Kuka is a leading manufacturer of multifunctional robots that represent an important building block for enterprises upgrading their factories with full automation, the latest human-machine interface functionality, and machine-to-machine communication. Midea want a 30% stake in Kuka and have offered €115 per share. Kuka’s shares traded at €84 the day before and had already increased 60% since the beginning of the year. This offer values Kuka at €4.6 billion, which means Midea’s 30% stake would be worth €1.4 billion – on par with Beijing Enterprise’s February 2016 takeover of recycling company EEW which was the largest Chinese acquisition of a German firm to-date. Midea’s takeover bid underscores Chinese interest in German Industry 4.0 technology; in January 2016, ChemChina paid €925 million for Munich-based KraussMaffei machine tools, in part because of their advances into Industry 4.0. Recent smaller Chinese acquisitions in the German machine tool industry, which include the partial acquisitions of H.Stoll by the ShangGong Group and of Manz by the Shanghai Electric Group are, in part, motivated by the objective to partake in the latest Industry 4.0 developments.   Cont'd...

RAPID 2016 - HP begins selling its Jet Fusion 3D printer; says it's 50% cheaper, 10X faster than others

Lucas Mearian for ComputerWorld:  Hewlett-Packard today began taking orders for its first 3D printer, the HP Jet Fusion printer, which it said will be up to 10 times faster than existing machines and can cut the cost of manufacturing parts in half. At the RAPID 3D additive manufacturing conference here, HP revealed two models:  the lower-cost and lower production 3200 series and the 4200 series, for which it is now taking orders. The 4200 series will begin shipping to manufacturers in October; the 3200 series will be available in mid-2017. HP originally unveiled its Jet Fusion printer in October 2014. HP claims its printer will enable mass production of parts through additive manufacturing (3D printing), instead of just rapid prototyping, for which the technology  is typically used. The printers are unlikely to be used to produce millions or billions of production parts; think, instead, in terms of hundreds, thousands or tens of thousands of parts, HP said.   Cont'd...

German manufacturers take aim at smart factories, mass customization

TOMOHISA TAKEI, Nikkei staff writer:  It has been five years since Industry 4.0, the fourth industrial revolution, was first unveiled at the Hannover Messe industrial technology trade fair in Germany.      Industry 4.0 was more of a conceptual model at that time. This year, however, the trade show witnessed an emerging trend toward "smart factories" that can provide mass customization.      On April 25, SEW-Eurodrive's booth at Hannover Messe drew crowds of visitors. The German industrial motor maker demonstrated its automated vehicles for next-generation assembly plants, what it calls the "Lean Smart Factory."      In SEW-Eurodrive's demonstration, about 10 such "smart vehicles" moved about as five workers assembled products. One vehicle approached its target worker, displayed a procedure on its screen and instructed the worker to do the assembly work. After the worker completed the task, the vehicle received the product and moved on to another worker in charge of the next process.      These smart vehicles were connected over a network and programmed at the company factory. But it looked as if the products themselves were driving the vehicles and moved to where the tasks needed to be done. SEW-Eurodrive has already introduced the system at its factory in the southwestern German town of Graben-Neudorf, intending to make individually tailored products in the future.   Cont'd...

Records 286 to 300 of 440

First | Previous | Next | Last

Featured Product

MICROSCAN: READ AND VERIFY BARCODES INVISIBLE TO THE NAKED EYE

MICROSCAN: READ AND VERIFY BARCODES INVISIBLE TO THE NAKED EYE

Space, or the lack of it, can be a challenge when placing barcodes or Data Matrix symbols on components. However, readable barcodes are critical to component traceability, time/date stamping, work in progress (WIP) tracking, and recall management. MicroHAWK UHD smart cameras can decode very small and difficult-to-read barcodes, including Data Matrix two-dimensional (2D) symbols and direct part marks (DPM). Users can rely on the MicroHAWK UHD to read symbols with an x-dimension almost invisible to the naked eye!