FIRST 3D TOOLS PRINTED ABOARD SPACE STATION

Evan Gough for UniverseToday:  Astronauts aboard the International Space Station have manufactured their first tool using the 3D printer on board the station. This is another step in the ongoing process of testing and using additive manufacturing in space. The ability to build tools and replacement parts at the station is something NASA has been pursuing keenly. The first tool printed was a simple wrench. This may not sound like ground-breaking stuff, unless you’ve ever been in the middle of a project only to find you’re missing a simple tool. A missing tool can stop any project in its tracks, and change everybody’s plans. The benefits of manufacturing needed items in space are obvious. Up until now, every single item needed on the ISS had to be sent up via re-supply ship. That’s not a quick turnaround. Now, if a tool is lost or destroyed during normal use, a replacement can be quickly manufactured on-site.   Cont'd...

The Additive Manufactured Excavator Design Competition

The additive excavator cab design competition had very few limitations on the cab design and essentially encouraged students to showcase our skills and ideas. We could create something totally unique, aesthetically pleasing, yet functional to showcase the capabilities of additive manufacturing

How Big Area Additive Manufacturing is Enabling Automotive Microfactories

Ian Wright for Engineering.com:  Make no mistake, 3D printing is changing manufacturing. Although it may take years before we see the full impact of bringing this technology from rapid prototyping to full-scale production, there are already hints of big things to come. Take Local Motors’ recent purchase of two Big Area Additive Manufacturing (BAAM) systems from Cincinnati Incorporated (CI) as an example. The former company designs, builds and sells custom vehicles out of its US-based microfactories. The latter is a century-old manufacturer of metal fabrication tools and, more recently, BAAM.   Cont'd...

Computational Hydrographic Printing

From Yizhong Zhang, Chunji Yin, Changxi Zheng, Kun Zhou's paper:   Hydrographic printing is a well-known technique in industry for transferring color inks on a thin film to the surface of a manufactured 3D object. It enables high-quality coloring of object surfaces and works with a wide range of materials, but suffers from the inability to accurately register color texture to complex surface geometries. Thus, it is hardly usable by ordinary users with customized shapes and textures. We present computational hydrographic printing, a new method that inherits the versatility of traditional hydrographic printing, while also enabling precise alignment of surface textures to possibly complex 3D surfaces. In particular, we propose the first computational model for simulating hydrographic printing process. This simulation enables us to compute a color image to feed into our hydrographic system for precise texture registration. We then build a physical hydrographic system upon off-the-shelf hardware, integrating virtual simulation, object calibration and controlled immersion. To overcome the difficulty of handling complex surfaces, we further extend our method to enable multiple immersions, each with a different object orientation, so the combined colors of individual immersions form a desired texture on the object surface. We validate the accuracy of our computational model through physical experiments, and demonstrate the efficacy and robustness of our system using a variety of objects with complex surface textures...  (full paper)

3D printing of patterned membranes opens door to rapid advances in membrane technology

Penn State Materials Research Institute via Science Daily:  A new type of 3D printing developed by researchers at Penn State will make it possible for the first time to rapidly prototype and test polymer membranes that are patterned for improved performance. Ion exchange membranes are used in many types of energy applications, such as fuel cells and certain batteries, as well as in water purification, desalination, removal of heavy metals and food processing. Most ion exchange membranes are thin, flat sheets similar to the plastic wrap in your kitchen drawer. However, recent work has shown that by creating 3D patterns on top of the 2D membrane surface, interesting hydrodynamic properties emerge that can improve ion transport or mitigate fouling, a serious problem in many membrane applications. Currently, making these patterned membranes, also called profiled membranes, involves a laborious process of etching a silicon mold with the desired pattern, pouring in the polymer and waiting until it hardens. The process is both time-consuming and expensive, and results in a single pattern type. “We thought if we could use 3D printing to fabricate our custom-synthesized ion exchange membranes, we could make any sort of pattern and we could make it quickly,” says Michael Hickner, associate professor of materials science and engineering at Penn State.   Cont'd...

The Advantages Of Using 3D Printing For Creating Your First Product Prototype

Why is accessible 3D printing so beneficial for first-time entrepreneurs? Read on for some answers.

New dual-step method provides 3D printing of conductive metals.

Shalini Saxena for ArsTechnica:  Customizable, wearable electronics open the door to things like heart-monitoring t-shirts and health-tracking bracelets. But placing the needed wiring in a complex 3D architecture has been hard to do cheaply. Existing approaches are limited by material requirements and, in the case of 3D writing, slow printing speeds. Recently, a research team at Harvard University developed a new method to rapidly 3D print free-standing, highly conductive, ductile metallic wires. The new method combines 3D printing with focused infrared lasers that quickly anneal the printed nanoparticles into the desired architecture. The result is a wire with an electrical conductivity that approaches that of bulk silver.   Cont'd...

Survey 2016

By taking this 1 minute survey you will help us grow and find the advertisers that you are most interested in. This is an anonymous survey and your email address will not be sold.

RAPID 2016 - HP begins selling its Jet Fusion 3D printer; says it's 50% cheaper, 10X faster than others

Lucas Mearian for ComputerWorld:  Hewlett-Packard today began taking orders for its first 3D printer, the HP Jet Fusion printer, which it said will be up to 10 times faster than existing machines and can cut the cost of manufacturing parts in half. At the RAPID 3D additive manufacturing conference here, HP revealed two models:  the lower-cost and lower production 3200 series and the 4200 series, for which it is now taking orders. The 4200 series will begin shipping to manufacturers in October; the 3200 series will be available in mid-2017. HP originally unveiled its Jet Fusion printer in October 2014. HP claims its printer will enable mass production of parts through additive manufacturing (3D printing), instead of just rapid prototyping, for which the technology  is typically used. The printers are unlikely to be used to produce millions or billions of production parts; think, instead, in terms of hundreds, thousands or tens of thousands of parts, HP said.   Cont'd...

Biggest Challenges Of Mass Customization And Tips For Addressing These Challenges

Everything from web design to order management to shipping - not to mention the actual manufacturing process - has to change to accommodate a market of one.

The MakerBot Obituary

From Brian Benchoff at Hackaday:   MakerBot is not dead, but it is connected to life support waiting for a merciful soul to pull the plug.  This week, MakerBot announced it would lay off its entire manufacturing force, outsourcing the manufacturing of all MakerBot printers to China. A few weeks ago, Stratasys, MakerBot’s parent company, released their 2015 financial reports, noting MakerBot sales revenues have fallen precipitously. The MakerBot brand is now worth far less than the $400 Million Stratasys spent to acquire it. MakerBot is a dead company walking, and it is very doubtful MakerBot will ever be held in the same regard as the heady days of 2010. How did this happen? The most common explanation of MakerBot’s fall from grace is that Stratasys gutted the engineering and goodwill of the company after acquiring it. While it is true MakerBot saw its biggest problems after the acquisition from Stratasys, the problems started much earlier... (full article) (fist hand account from Isaac Anderson)

Disney files patent for near instantaneous 3D printing

Lucas Mearian for ComputerWorld:  Disney Research has filed a patent for a 3D printing technology that uses high-intensity light to harden photo-sensitive resin in a single process, removing the need for layer-by-layer printing. The patent describes a machine for printing in "a nearly instantaneous manner." "Presently, 3D printing is extremely slow and time consuming. For example, it may take several hours to print a single 3D object even if the 3D object is relatively small (e.g., several inches in diameter and four to 12 inches tall)," Disney stated in its patent filing. "The 3D printing process that uses conventional 3D printers ... is limited in its speed by the speed of the mechanism moving the print head to each new position on a print layer."   Cont'd...

A Swarm Of 3D Printing Spiders Could Build Your Next Home

IDO LECHNER for PSFK:  Watching an object being 3D-printed is a spectacle to behold; the speed at which intricate geometries unfold before your eyes is enough for anyone to reckon that this is the future of manufacturing. While both consumer-grade models and more advanced versions are capable of whipping up objects made from different materials, each with their own aesthetic and subsequent properties, the scale of what can be fabricated is entirely based on the size of the printer at use. For this reason, a research team based out of Siemens’ Corporate Technology’s Princeton campus has developed mobile 3D printers in the shape of spiders, which are both autonomous and capable of working in sync to expedite the printing process. PSFK spoke with Siemens’ Director of R&D of Engineering Livio Dalloro on why the team decided to shape their printers like spiders, the implications such a technique might have on the industry, and how Siemens sees the device unfolding in the foreseeable future.   Cont'd...

Low Volume Production Using 3D Printing

If you are new to the 3D printing industry, dont rush to buy the least expensive printer. Some of these might be too simple for your manufacturing requirements and lack some important features like print bed auto-calibration or Wi-Fi connectivity.

Bring 3D printed robots to life with 'Ziro' hand-controlled robotics kit

Benedict for 3Ders.org:   Tech startup ZeroUI, based in San Jose, California, has launched an Indiegogo campaign for Ziro, the “world’s first hand-controlled robotics kit”. The modular kit has been designed to bring 3D printed creations to life, and has already surpassed its $30,000 campaign goal. It would be fair to say that the phenomenon of gesture recognition, throughout the wide variety of consumer electronics to which it has been introduced, has been a mixed success. The huge popularity of the Nintendo Wii showed that—for the right product—users were happy to use their hands and bodies as controllers, but for every Wii, there are a million useless webcam or smartphone functions, lying dormant, unused, and destined for the technology recycle bin.   Full Article:  

Records 601 to 615 of 779

First | Previous | Next | Last

Additive & 3D Printing - Featured Product

BigRep ONE: Large-Scale 3D Printing

BigRep ONE: Large-Scale 3D Printing

The BigRep ONE is an award-winning, large-format 3D printer at an accessible price point. With over 350 systems installed worldwide, it's a trusted solution for prototyping and production by designers, innovators, and manufacturers alike. Featuring a massive one-cubic-meter build volume, the fast and reliable ONE brings your designs to life in full scale.