NASA, Made in Space think big with Archinaut, a robotic 3D printing demo bound for ISS

Debra Werner for Space News:  Within five years, companies could begin in-orbit manufacturing and assembly of communications satellite reflectors or other large structures, according to Made in Space, the Silicon Valley startup that sent the first 3D printer to the International Space Station in 2014. As Made in Space prepares to send a second 3D printer into orbit, the company is beginning work with Northrop Grumman and Oceaneering Space Systems on Archinaut, an ambitious effort to build a 3D printer equipped with a robotic arm that the team plans to install in an external space station pod, under a two-year, $20 million NASA contract. The project will culminate in 2018 with an on-orbit demonstration of Archinaut's ability to additively manufacture and assemble a large, complex structure, said Andrew Rush, Made in Space president. NASA's selected the Archinaut project, officially known as Versatile In-Space Robotic Precision Manufacturing and Assembly System, as part of its Tipping Points campaign, which funds demonstrations of space-related technologies on the verge of offering significant payoffs for government and commercial applications. Archinaut was one of three projects NASA selected in November that focus on robotic manufacturing and assembly of spacecraft and structures in orbit.  Cont'd...

3D printing software, sensors, and carbon nanotubes among top Advanced Materials trends of 2016

By Kira for 3ders.org:  The first month of 2016 is now behind us, and the year is shaping up to be particularly interesting in terms of 3D printing trends. In the advanced materials sector specifically, emerging technologies firmLux Research has predicted that the top three ‘undercover’ advanced materials trends of 2016 include improved 3D printing software and formats, Carbon nanotube products, and IoT devices embedded with sensing materials.   Cont'd...

Is Velo3D Plotting a 3-D Printed Robot Revolution?

Tekla S. Perry for IEEE Spectrum:   Velo3D, based in Santa Clara, Calif., has $22.1 million in venture investment to do something in 3-D printing: That makes it fourth among 2015’s best-funded stealth-mode tech companies in the United States, according to CB Insights. This dollar number is about all the hard news that has come out of this startup, founded in 2014 by Benyamin Butler and Erel Milshtein. But job postings, talks at conferences, and other breadcrumbs left along Velo3D's development trail—has created a sketchy outline of this company’s plans. Consider which 3-D printing technology is ready for disruption: metal. 3-D printing of plastics took off after 2009, when a key patent that covered the deposition technology expired; we now have desktop printers for 3-D plastic objects as cheap as $350. Printing of metal objects—done regularly in industry, particularly aerospace—uses a different, and, to date, far more expensive technology: selective laser sintering. This technology melts metal powders into solid shapes; it requires high temperatures, and far more complicated equipment than what’s found in the layering sort of printers used for plastic. The patent for this technology expired in early 2014—just before the formation of Velo3D. At the time, industry experts indicated that there wouldn’t be cheap metal printers coming anytime soon, but rather, would only come after “a significant breakthrough on the materials side,” OpenSLS’s Andreas Bastian told GigaOm in 2014. Could Velo3D’s founders have that breakthrough figured out?   Cont'd...

Thoughts turn to revolution in Davos

By Matthew Allen for SWI:  Intelligent robots and drones, 3D printers, self-driving vehicles, data mountains, smart production lines, fintech and blockchain – the fourth industrial revolution is here. The World Economic Forum’s (WEF) annual Davos meeting will ponder the potential, limitations and societal impacts of “Industry 4.0”. Will the transformation of the workplace create jobs or unemployment? Will it close the gap between industrialised and developing economies, rich and poor - or widen it? For Swiss firms, can the new technological revolution ease the pressures of the strong franc? Speaking ahead of the annual meeting in Davos, WEF founder Klaus Schwab called on world leaders to revise policies to accommodate the coming changes. “We are not yet sufficiently prepared for this fourth industrial revolution that will come over us like a tsunami and will change whole systems,” he said. “My fear is that if we are not prepared we will create a world where particularly the middle class is frozen out. That would lead to a new problem of social exclusion that we absolutely have to avoid.”  Cont'd...

New Ultrasonic 3D Printing Process Can Create and Print High-Tech Composite Materials

Scott J Grunewald for 3DPrint.com:  A team of engineers from the University of Bristol — comprising Thomas M. Llewellyn-Jones, Bruce W. Drinkwater and Richard S. Trask — have developed a new hybrid type of 3D printing that can both assemble and print with composite materials using a combination of desktop 3D printer technology, light-curable resins and ultrasonic waves. This new process can allow super strong and lightweight composites like the variety used to produce tennis rackets, golf clubs, professional bicycles or even airplane parts to be used with additive manufacturing technology. Needless to say these new material options will offer entire new industries the ability to incorporate 3D printing into their manufacturing workflow. And the best part is that for the most part the process was made using existing 3D printing technology. Composite materials are made by combining micro-structures of glass or carbon fibers with a plastic material. The carefully arranged fibers lock together and give the new material its strength and durability, while the plastic ensures that the resulting material will be lightweight. Currently, composite materials are manufactured as thin sheets that are then layered and cut into the desired shape and thickness. The problem with using this as a 3D printing material is the small fibers in the composite materials. In order to produce the desired strength the fibers need to be aligned in a very precise structure, which is currently not possible to reproduce using a 3D printer.   Cont'd.. .

For Advanced Manufacturing, Success Demands Innovation, Education and Public-Private Partnership

MICHAEL D. WHEELER for Photonics.com:  Global manufacturing has undergone enormous changes in the past decade as many developing countries have joined the club of tier-one manufacturing nations, a recession stalled demand, and employment fell precipitously in leading economies. Yet manufacturing remains critical to the future of both developing and advanced worlds, driving innovation, productivity and competitiveness, and offering a pathway out of poverty. Recent attention has focused on “advanced manufacturing,” which replaces traditional labor-intensive processes with ones based on the newest technologies. It encompasses a family of activities that depends on information, computation, software, sensing and networking, while making use of cutting-edge materials and emerging capabilities such as nanotechnology. Advanced manufacturing is an especially potent propellant of future economic growth, distinguished by continual process improvement and rapid new product introduction. These critical features will lead to the building of lighter, more fuel-efficient automobiles, the creation of “needleless” tests for medical conditions like diabetes, and the fabrication of semiconductors with 10 times the current processing power.   Cont'd...

Rob Scharff's Soft Robotics 3D-printed hand responds to human grip

Dutch Design Week 2015: Delft University of Technology graduate Rob Scharff has created a soft robotic limb that can shake hands with people. The hand was created as part of Scharff's Soft Robotics research project – which focuses on the ways robots can be integrated with more tactile materials, and so improve robot-human interactions.  Cont'd...

Cisco Teams Up with Robotics Firm Fanuc for IoT

by Zacks Equity Research:  Technology giant and Dow component Cisco Systems, Inc. recently entered into a strategic alliance with a robotics company Fanuc America, thereby stepping up its efforts to make itself a key player in the Internet of Things (IoT) space.  Per the alliance, Fanuc and Cisco have built an IoT system that enables Fanuc to monitor every robot on the factory floor. This way it can be determined whether a robot is likely to fail, so that a service technician can fix the equipment before it stops working. This could save companies hundreds of dollars of fixing cost. Per Cisco CEO Chuck Robbins, downtime for these robots can cost a business $16,000 per minute. Therefore, the new system that offers predictive maintenance can be a big thing for some operations. The companies are currently testing the system in a channel that comprises around 1,800 robots and includes Fanuc customer, GM. In this testing period, Fanuc says its customer has saved $38 million. Fanus has plans to expand the system to 2,500 robots by the end of the year. Cont'd...

Technology gap gives foreign firms the edge in China robot wars

BY GERRY SHIH for Reuters:  In a cavernous showroom on the outskirts of this port city in northeastern China, softly whirring lathes and svelte robot arms represent Dalian Machine Tools Group's (DMTG) vision of an automated future for Chinese manufacturing. On closer inspection, however, most of the machines' control panels bear the logos of Japan's FANUC Corp or the German conglomerate Siemens. The imported control systems in DMTG's products – used in the assembly of everything from smartphones to cement trucks – are symbolic of the technology gap between Chinese and foreign industrial automation firms, just one of several challenges facing China's ambition to nurture a national robotics industry. Chinese robotics firms are also grappling with a weakening economy and slumping automotive sector, and industry insiders already predict a market bubble just three years after the central government issued policies to spur robotics development. "Last year everybody thought they could produce a robot," said Alan Lee, director of Asia sales and business development at Boston-based Rethink Robotics. "When you have market saturation you'll have filtering and M&A. These guys will be the first layer to suffer."  It is a storyline familiar from other new industries such as solar panels: Beijing's policies and subsides trigger a wave of low-margin, low-cost contenders to rush into the market, where, with no meaningful technology of their own, they struggle to compete on price alone.   Cont'd...

OMRON to Acquire U.S. Based Adept Technology

OMRON plans to acquire 100% of the outstanding shares of Adept common stock through an all cash tender offer followed by a second-step merger. OMRON will offer Adept investors $13.00 per share of Adept common stock, which represents a 63% premium over the closing price for Adept's common stock on September 15, 2015. This values Adept at approximately $200 million. OMRON will fund the tender offer through cash on hand.  Commenting on the acquisition, Yutaka Miyanaga, OMRON Industrial Automation Business Company President, said, "We are delighted Adept Technology, a world leader in robotics, has agreed to join OMRON. This acquisition is part of our strategy to enhance our automation technology and position us for long term growth. Robotics will elevate our offering of advanced automation."  Rob Cain, President and Chief Executive Officer of Adept, added, "We are excited about the opportunity to join OMRON, a global leader in automation. Together, our products will offer new innovative solutions to customers all around the globe."  Full Press Release:

Robot That Copies Artist's Exact Strokes To Replicate A Painting In 3D

From the Instapainting Blog: Over the past three weeks I’ve been working on a robotic painter to research the area of mechanical artwork reproduction and automated picture to painting creation for  Instapainting.com  and the print store e-commerce platform  A Manufactory . The initial prototype was built in about 3 weeks, and currently does mechnical reproductions. The AI painting mode which will paint a photograph will follow in the next post (putting some finishing touches on it)... ...The current prototype operates on 3 dimensions: X, Y, and a Z axis for pen pressure from the Wacom tablet. The artist can control the motion from a Wacom tablet and, for the most part, it’s lag-free. Every stroke is recorded so that it can be played back. You can see both the intitial painting and the playback in the video below... ( full post )

Humanoid robot negotiates outdoor, rough terrain with ease

Boston Dynamics have developed the "Atlas" robot a highly mobility, humanoid robot designed to negotiate outdoor, rough terrain.  Here is a video showing "Atlas" courtesy euronews.

Robotics firm GreyOrange raises $30 million, to expand overseas

GreyOrange, a robotics firm that is in the business of automating warehouses, has raised $30 million (Rs 191.6 crore) in a round led by Tiger Global Management, with participation from existing investors Blume Ventures. The funding, which the company says is one of the largest for robotics company globally, will be used to invest in developing new products, expand internationally into Asia Pacific, Middle East and Europe. The company says it has a 90% market share of India's warehouse automation market and it powers over 180,000 square feet of warehouse. "We are doubling our team size globally as we steer the company and our products beyond India and into international markets," said co-founder and CEO Samay Kohli, who founded the company with Akash Gupta in 2011. The company has two products: The Sorter and the Butler. The former is a high-speed system that consolidates orders and routes parcels. By Diwali, the company will have installed sortation capacity of 3 million parcels per day. The second product, the Butler, is an order-picking system that is tailored for high-volume, high-mix orders characteristic of e-commerce and omni-channel logistics fulfilment.   Cont'd..  

Giving robots a more nimble grasp

Engineers use the environment to give simple robotic grippers more dexterity. Engineers at MIT have now hit upon a way to impart more dexterity to simple robotic grippers: using the environment as a helping hand. The team, led by Alberto Rodriguez, an assistant professor of mechanical engineering, and graduate student Nikhil Chavan-Dafle, has developed a model that predicts the force with which a robotic gripper needs to push against various fixtures in the environment in order to adjust its grasp on an object.

Robo-Sabotage Is Surprisingly Common

By Matt Beane for MIT Technology Review:  I think perhaps there’s something else at work here. Beyond building robots to increase productivity and do dangerous, dehumanizing tasks, we have made the technology into a potent symbol of sweeping change in the labor market, increased inequality, and recently the displacement of workers. If we replace the word “robot” with “machine,” this has happened in cycles extending well back through the Industrial Revolution. Holders of capital invest in machinery to increase production because they get a better return, and then many people, including some journalists, academics, and workers cry foul, pointing to the machinery as destroying jobs. Amidst the uproar, eventually there are a few reports of people angrily breaking the machines. Two years ago, I did an observational study of semiautonomous mobile delivery robots at three different hospitals. I went in looking for how using the robots changed the way work got done, but I found out that beyond increasing productivity through delivery work, the robots were kept around as a symbol of how progressive the hospitals were, and that when people who’d been doing similar delivery jobs at the hospitals quit, their positions weren’t filled.   Cont'd...

Records 196 to 210 of 278

First | Previous | Next | Last

Featured Product

Emulate3D Engineering Software Creates Your Advantage

Emulate3D Engineering Software Creates Your Advantage

Emulate3D software helps you model and test your AMHS solutions rapidly. Use Demo3D to create running models quickly, then generate videos, stills, or view the models in virtual reality at the click of a button. Sim3D enables you to carry out experimental test runs to select optimal solutions and the most robust operating strategy, and Emulate3D Controls Testing is the best way to debug your PLCs offline, and off the project's critical path. Connect to major PLCs, import CAD, and plug into HTC Vive and Oculus Rift to produce awesome models!