Why manufacturing will make or break the future of energy

Lauren Hepler for GreenBiz:  From solar panels a decade ago to energy storage today, the history of clean tech is littered with capital-intensive concepts poised to radically alter the relationship between industrialized society and the environment. But why do these widely heralded breakthroughs always seem to limp along so slowly when it comes to actually hitting the market? The dreaded "valley of death" between conception and commercialization is one increasingly recognized explanation, dooming novel technologies to relegation in never-ending pilot projects as follow-on investment lags. For Mark Johnson, the Department of Energy's resident innovation expert, the real problem often boils down to production. That is, not just inventing a new energy-centric technologies, but making sure those new tools can be reliably made in a cost-effective manner.   Cont'd...

Going Beyond 3D Printing to Add a New Dimension for Additive Manufacturing

Lawrence Livermore National Laboratory:  A team of Lawrence Livermore National Laboratory researchers has demonstrated the 3D printing of shape-shifting structures that can fold or unfold to reshape themselves when exposed to heat or electricity. The micro-architected structures were fabricated from a conductive, environmentally responsive polymer ink developed at the Lab. In an article published recently by the journal Scientific Reports (link is external), lab scientists and engineers revealed a strategy for creating boxes, spirals and spheres from shape memory polymers (SMPs), bio-based "smart" materials that exhibit shape-changes when resistively heated or when exposed to the appropriate temperature. Lab researcher Jennifer Rodriguez examines a 3D printed box that was "programmed" to fold and unfold when heated While the approach of using responsive materials in 3D printing, often known as "4D printing," is not new, LLNL researchers are the first to combine the process of 3D printing and subsequent folding (via origami methods) with conductive smart materials to build complex structures.   Cont'd...

New technologies reshape production lines

LINSEY MILLER & CHRISTOF WEHNER OF ARTESYN EMBEDDED TECHNOLOGIES, originally Published on Embedded Computing Design:  Whether people call it Industry 4.0, Industrial Internet of Things (IIoT), or networked production, they are all talking about coming changing paradigms in the industrial network. Today there are several single-task workstations, manned by humans or robots, which are connected to a higher-level enterprise resource planning (ERP) system. However, that hierarchy is on the cusp of changing massively in the near future to accommodate newer, more intelligent technologies spanning multiple segments of the production line.   Cont'd...

A New Effort to Teach Low-Income Students Marketable Skills

Mikahail Zinshteyn for The Atlantic:  The Obama administration is rolling out an experimental plan that will allow employers and training programs to partner with accredited universities to teach students work-related skills. This pilot will enable students to receive federal financial aid for programs that are typically ineligible for these funds, like coding boot camps. By pairing traditional universities with companies that train workers for in-demand fields like computer coding and advanced manufacturing, the U.S. Department of Education hopes to create a new model for delivering high-quality academic credentials to workers in a shorter period of time.  Cont'd...

How to prepare a business for an Industry 4.0 network

Joe Bombagi for Business Review Europe:  The first industrial revolution was based on the use of steam to power machines. The second centred on the use of electricity to supply energy to assembly lines. The third came about with the use of electronics and IT to further automate production. But all of that is in the past. We are now in the midst of the fourth industrial revolution, known as Industry 4.0, in which the Internet of Things (IoT) is set to overhaul not only business, but also every aspect of modern life. From cars, washing machines, and even clothing, to heart monitors and dams, anything and everything will soon be connected. As a result, the Industry 4.0 phenomenon is expected to revolutionise all areas within the manufacturing space, connecting all the elements that take part in the production process within the industrial environment: machines, products, systems, and people. The IoT will make today’s organisations more competitive by enabling them to further automate manufacturing processes, and collect and analyse data which they can then use to tailor their products to specific client needs.   Cont'd...

Brookings Report - America's advanced industries: New trends

Brookings Report: Â Leaders in cities, metropolitan areas, and states across the country continue to seek ways to reenergize the American economy in a way that works better for more people. To support those efforts, this report provides an update on the changing momentum and geography of Americas advanced industries sector-a group of 50 R&D- and STEM (science-technology-engineering-mathematics)-worker intensive industries the vitality of which will be essential for supporting any broadly shared prosperity in U.S. regions. What emerges from the update is a mixed picture of progress and drift that registers continued momentum in the manufacturing sub-sector; a major slump in energy; and strong, widely distributed growth in high-tech services- all of which adds up to a somewhat narrowed map of growth overall. Â Cont'd.. .

2100 Animated Mechanical Mechanisms

Mechanical engineer Nguyen Duc Thang used Autodesk Inventor to animate different types of gears, joints, clutches, linkage and other common mechanisms. 2100 total: (Nguyen Duc Thang's youtube channel) (download of all videos)

How 3D Printing Streamlines the Engineering Workflow

Michael Molitch-Hou for Engineering.com:  The desktop 3D printing space has become an interesting one in the last year or so, as manufacturers shift the focus away from consumers and towards professional and industrial users. The technology has proven that it may not quite be ready to produce consumer goods for every household—or perhaps households aren't quite ready for 3D printing at home. Those in the industry know, however, that low-cost 3D printing is still a powerful technology, if not for fabricating home goods, then as an early design tool and, in some cases, even for short-run manufacturing.   Cont'd...

Metal additive manufacturing software 'Amphyon' uses simulations to offset printing distortions

Benedict for 3Ders.org:  German startup Additive Works is developing a simulation-based preprocessing software for metal additive manufacturing. The “Amphyon” software package, currently in beta, uses a four-step approach which enables manufacturers to predict and avoid potential deformations in their printed parts. As the metal additive manufacturing industry expands its collective wealth of knowledge and experience, users of SLM 3D printers are becoming less likely to create faulty printed parts. While a complete amateur might make the mistake of printing an unsupported or weak structure which exhibits radical contortions before it has even left the print bed, most makers now know a few things about stress points, deformations, and how to avoid bad prints. Despite these advancements, problems still persist even for the most advanced users of laser-based 3D printers. Problems such as residual stresses, deformations, and insufficient part density can occur frequently and, due to various design, material, and hardware factors, can often be hard to predict.   Cont'd...

Do the benefits of robotics outweigh the heavy demands on infrastructure?

Ben Rossi for Information Age:   Robotics has already been deployed in manufacturing to great effect for over a decade, performing delicate and precise tasks with greater accuracy than humans. But now cutting-edge robots and other smart machines are set to join forces with the rapidly expanding Internet of Things, which Gartner estimates will total 25 billion devices by 2020. In healthcare, robotic services are already operating pharmacy dispensers and robotic trolleys are now deployed in a growing number of hospitals. In hospitality, robots deliver services such as drinks dispensing and automated trolley deliveries. Robots have even made their way into education, where they are being deployed successfully as a tutor, tool or peer in learning activities. But what impact will this large-scale adoption of robotics have on existing networks as they encounter inevitable further strain?   Cont'd...

This Time, 3D Printer Makers Think They Found a Sweet Spot

Olga Kharif for Bloomberg Technology:  3D printing has long been a cool technology in search of a huge market. The industry may have found one in mass production. Because of its high cost and slow pace, 3D printing’s use in manufacturing has been limited mostly to prototyping, making plastic molds for teeth alignment and creating tools. That may be about to change, potentially lifting the shares of printer makers 3D Systems Inc. and Stratasys Ltd. after a long slump.  HP Inc. will introduce a $130,000 printer later this year, which it says can make parts at half the expense and at least 10 times faster than rival printers -- and likely use lower-cost materials. While HP’s entry could be a competitive blow, it may also help expand the market for 3D mass production, where other printer companies have already turned their focus. Jabil Circuit Inc. plans to be an early adopter of HP’s device, printing end plastic parts for aerospace, auto and industrial applications that it currently makes using processes such as injection molding, John Dulchinos, vice president of digital manufacturing at the electronics-manufacturing service provider, said in an interview.   Cont'd...

3D Hubs, an online marketplace for local 3D printing, scores $7M Series B

Steve O'Hear for TechCrunch:  3D Hubs, an online marketplace for 3D printing services, is tapping into two recent trends enabled by industrial 3D printing: the rapid prototyping of new products, and the move to personalised and bespoke production. The Amsterdam-headquartered startup connects those requiring 3D printing with local 3D printers, both through its website that lets you order 3D printing jobs online, including getting a real-time quote, and via an API that enables companies to automate short production runs of products on-demand. The latter, of course, is also powering “zero-inventory” manufacturing: products are only produced on a per-order basis (and in some instances are also fulfilled directly to the end customer), which is another trend that is starting to gain traction.   Cont'd...

IISc building India's 1st smart factory in Bengaluru

Chethan Kumar for The Times of India:  India's first smart factory — moving from automation to autonomy — where machines speak with each other, is being set up in Bengaluru. A smart factory, armed with data exchange in manufacturing and the Internet of Things (IoT) is the future and experts are calling it revolution Industry 4.0. Reports peg the smart factory industry to touch $215 billion by by 2025 and there has been no major economy in the world that is not embracing it. And, India's very own smart factory, the first one, is making progress at the Indian Institute of Science's (IISc) Centre for Product Design and Manufacturing (CPDM) with a seed funding from The Boeing Company. CPDM Chairman Amaresh Chakrabarti, who spoke exclusively to TOI about the project, said: "Yes, it will actually be manufacturing things here. But it will be a scaled down version, we won't have the numbers of an actual factory." As for the funding, he said: "I can only say Boeing is giving us enough to implement the project. I cannot discuss details. But the project is revolutionary. Indian factories now have automation, we've made some progress there, but here, we are talking about a facility that is autonomous, thinking and working on its own."   Cont'd...

Robotics, automation, and how a strong network is needed to connect it all up

Manish Sablokk for IoTTech:   Cutting-edge robots and other advanced smart machines are set to be added into the rapidly expanding Internet of Things, which is projected to reach 25 billion devices by 2020. Robotics has already been used in manufacturing to great effect for over a decade, performing delicate and precise tasks with a higher success rate than humans. With advancements such as 'deep learning' robots, delivery drones and ubiquitous knowledge-sharing between machines, widespread robotics adoption is becoming far more feasible. In healthcare, there are already robotic services in operation with automated pharmacy dispensing and robotic trolleys - robots that can navigate between floors and even call the lift using a Wi-Fi sensor. The hospitality sector has also been a keen adopter of robotics to deliver services and in education, robots are being deployed successfully as a tutor, tool or peer in learning activities, providing language, science and technology education.   Cont'd...

Industrial digitisation on fast track

The New Indian Express:  In a move to build the digital enterprise, the digitisation in industrial sector is  set to grow to 65 percent in the next five years as it is a priority of most CEOs in the industry, according to a PwC report. According to PwC Industry 4.0 report, more than half of the industrial companies in India are using data analytics and over 90 per cent expect data to impact their decision-making in five years. Globally, digitisation is expected to rise to 72 per cent from 33 per cent, the report noted. It is also noted that around 39 percent of the companies plan to invest more than 8 percent of their annual revenues in digital programmes in the next five years.   Cont'd...

Records 961 to 975 of 1144

First | Previous | Next | Last

Featured Product

OnLogic Helix 511 Fanless Intel 12th Gen Edge Computer

OnLogic Helix 511 Fanless Intel 12th Gen Edge Computer

OnLogic's Helix 511 Fanless Edge computer delivers ultra-reliable, fanless computing using Intel® 12th Generation performance hybrid processing. The Helix 511 is a versatile fanless computer capable of powering solutions including advanced automation, light detection and ranging (LiDAR), access control & building automation, or virtually any other IoT or edge gateway functionality needed, with support for 4 simultaneous serial connections. The system is able to reliably operate in temperatures ranging from 0 to 50°C, can accept power input ranging from 12 to 24 Volts, and is Wall, VESA and DIN rail mountable.