Innovation in Creation: Demand Rises While Prices Drop for 3D Printing Machines

Declining 3D printer prices will prompt innovations at a faster rate in downstream markets, making customization the new norm for a wide variety of products.

Buildings Manufactured From A 3D Printer

With the flexibility of construction, 3D buildings will allow architects to dream up all sorts of extraordinary edifices that would be too difficult or too expensive to build, using traditional methods. A 3D-printed building would not need to coincide with our traditional ideas of what a building looks like.

3D printing software, sensors, and carbon nanotubes among top Advanced Materials trends of 2016

By Kira for 3ders.org:  The first month of 2016 is now behind us, and the year is shaping up to be particularly interesting in terms of 3D printing trends. In the advanced materials sector specifically, emerging technologies firmLux Research has predicted that the top three ‘undercover’ advanced materials trends of 2016 include improved 3D printing software and formats, Carbon nanotube products, and IoT devices embedded with sensing materials.   Cont'd...

Is Velo3D Plotting a 3-D Printed Robot Revolution?

Tekla S. Perry for IEEE Spectrum:   Velo3D, based in Santa Clara, Calif., has $22.1 million in venture investment to do something in 3-D printing: That makes it fourth among 2015’s best-funded stealth-mode tech companies in the United States, according to CB Insights. This dollar number is about all the hard news that has come out of this startup, founded in 2014 by Benyamin Butler and Erel Milshtein. But job postings, talks at conferences, and other breadcrumbs left along Velo3D's development trail—has created a sketchy outline of this company’s plans. Consider which 3-D printing technology is ready for disruption: metal. 3-D printing of plastics took off after 2009, when a key patent that covered the deposition technology expired; we now have desktop printers for 3-D plastic objects as cheap as $350. Printing of metal objects—done regularly in industry, particularly aerospace—uses a different, and, to date, far more expensive technology: selective laser sintering. This technology melts metal powders into solid shapes; it requires high temperatures, and far more complicated equipment than what’s found in the layering sort of printers used for plastic. The patent for this technology expired in early 2014—just before the formation of Velo3D. At the time, industry experts indicated that there wouldn’t be cheap metal printers coming anytime soon, but rather, would only come after “a significant breakthrough on the materials side,” OpenSLS’s Andreas Bastian told GigaOm in 2014. Could Velo3D’s founders have that breakthrough figured out?   Cont'd...

Volvo Construction Equipment Digs Up Prototype Savings Of 18 Weeks And 92% Of Costs

Since 3D printing the prototype cost $770 and took only two weeks, including both design and development, VCE completed its testing much sooner than traditional methods would have allowed.

Thoughts turn to revolution in Davos

By Matthew Allen for SWI:  Intelligent robots and drones, 3D printers, self-driving vehicles, data mountains, smart production lines, fintech and blockchain – the fourth industrial revolution is here. The World Economic Forum’s (WEF) annual Davos meeting will ponder the potential, limitations and societal impacts of “Industry 4.0”. Will the transformation of the workplace create jobs or unemployment? Will it close the gap between industrialised and developing economies, rich and poor - or widen it? For Swiss firms, can the new technological revolution ease the pressures of the strong franc? Speaking ahead of the annual meeting in Davos, WEF founder Klaus Schwab called on world leaders to revise policies to accommodate the coming changes. “We are not yet sufficiently prepared for this fourth industrial revolution that will come over us like a tsunami and will change whole systems,” he said. “My fear is that if we are not prepared we will create a world where particularly the middle class is frozen out. That would lead to a new problem of social exclusion that we absolutely have to avoid.”  Cont'd...

New Ultrasonic 3D Printing Process Can Create and Print High-Tech Composite Materials

Scott J Grunewald for 3DPrint.com:  A team of engineers from the University of Bristol — comprising Thomas M. Llewellyn-Jones, Bruce W. Drinkwater and Richard S. Trask — have developed a new hybrid type of 3D printing that can both assemble and print with composite materials using a combination of desktop 3D printer technology, light-curable resins and ultrasonic waves. This new process can allow super strong and lightweight composites like the variety used to produce tennis rackets, golf clubs, professional bicycles or even airplane parts to be used with additive manufacturing technology. Needless to say these new material options will offer entire new industries the ability to incorporate 3D printing into their manufacturing workflow. And the best part is that for the most part the process was made using existing 3D printing technology. Composite materials are made by combining micro-structures of glass or carbon fibers with a plastic material. The carefully arranged fibers lock together and give the new material its strength and durability, while the plastic ensures that the resulting material will be lightweight. Currently, composite materials are manufactured as thin sheets that are then layered and cut into the desired shape and thickness. The problem with using this as a 3D printing material is the small fibers in the composite materials. In order to produce the desired strength the fibers need to be aligned in a very precise structure, which is currently not possible to reproduce using a 3D printer.   Cont'd.. .

For Advanced Manufacturing, Success Demands Innovation, Education and Public-Private Partnership

MICHAEL D. WHEELER for Photonics.com:  Global manufacturing has undergone enormous changes in the past decade as many developing countries have joined the club of tier-one manufacturing nations, a recession stalled demand, and employment fell precipitously in leading economies. Yet manufacturing remains critical to the future of both developing and advanced worlds, driving innovation, productivity and competitiveness, and offering a pathway out of poverty. Recent attention has focused on “advanced manufacturing,” which replaces traditional labor-intensive processes with ones based on the newest technologies. It encompasses a family of activities that depends on information, computation, software, sensing and networking, while making use of cutting-edge materials and emerging capabilities such as nanotechnology. Advanced manufacturing is an especially potent propellant of future economic growth, distinguished by continual process improvement and rapid new product introduction. These critical features will lead to the building of lighter, more fuel-efficient automobiles, the creation of “needleless” tests for medical conditions like diabetes, and the fabrication of semiconductors with 10 times the current processing power.   Cont'd...

Special Tradeshow Coverage for Advanced Manufacturing Conference & Expo 2016

Advanced Manufacturing Conference & Expo 2016 will be held from February 9th - 11th in Anaheim, California. This ManufacturingTomorrow.com Special Tradeshow report aims to bring you news, articles and products from this years event.

3D Printing of Motors and Electronics

My research involves developing techniques to 3D print electric motors and electronics. This goes beyond the usual 3D printed structures - structures dont do anything. To do things, we need motors and electronics to control those motors.

Robotic Additive Manufacturing Platform for 3D Printing Composite Parts

The first-of-its-kind solution consists of a standard commercially available robot, composite deposition end-effector hardware and a comprehensive software suite.

3D Printing and Acoustics: Rapid Prototyping of Sound Diffusers

By being able to design diffusers in 3D and print them, we streamline the prototyping process tremendously. We can do virtual simulations with the 3D models to get a sense of the effectiveness, and we can make aesthetic or functional changes before its printed.

Rob Scharff's Soft Robotics 3D-printed hand responds to human grip

Dutch Design Week 2015: Delft University of Technology graduate Rob Scharff has created a soft robotic limb that can shake hands with people. The hand was created as part of Scharff's Soft Robotics research project – which focuses on the ways robots can be integrated with more tactile materials, and so improve robot-human interactions.  Cont'd...

Cisco Teams Up with Robotics Firm Fanuc for IoT

by Zacks Equity Research:  Technology giant and Dow component Cisco Systems, Inc. recently entered into a strategic alliance with a robotics company Fanuc America, thereby stepping up its efforts to make itself a key player in the Internet of Things (IoT) space.  Per the alliance, Fanuc and Cisco have built an IoT system that enables Fanuc to monitor every robot on the factory floor. This way it can be determined whether a robot is likely to fail, so that a service technician can fix the equipment before it stops working. This could save companies hundreds of dollars of fixing cost. Per Cisco CEO Chuck Robbins, downtime for these robots can cost a business $16,000 per minute. Therefore, the new system that offers predictive maintenance can be a big thing for some operations. The companies are currently testing the system in a channel that comprises around 1,800 robots and includes Fanuc customer, GM. In this testing period, Fanuc says its customer has saved $38 million. Fanus has plans to expand the system to 2,500 robots by the end of the year. Cont'd...

RoboSAM Can Assess Its Situation and Call a Human for Help When It Needs Assistance

If the robot is not sure whether it can complete the task-for example if the part is "buried" within the bin-it takes pictures of its situation and calls a remotely located human (the "human on call") for help.

Records 631 to 645 of 779

First | Previous | Next | Last

Additive & 3D Printing - Featured Product

BigRep ONE: Large-Scale 3D Printing

BigRep ONE: Large-Scale 3D Printing

The BigRep ONE is an award-winning, large-format 3D printer at an accessible price point. With over 350 systems installed worldwide, it's a trusted solution for prototyping and production by designers, innovators, and manufacturers alike. Featuring a massive one-cubic-meter build volume, the fast and reliable ONE brings your designs to life in full scale.