Kaman Measuring Announces New Digital Differential Impedance Transducer (DDIT)

Specially designed for non-contact linear position displacement sensing applications

Middletown, CT - The Measuring Division of Kaman Precision Products, Inc., the world leader in the design and manufacture of high-performance position measurement systems, announces the release of a new eddy current measurement system, the Digital Differential Impedance Transducer (DDIT). The DDIT is designed to provide a digital interface for high speed eddy current measurement systems, with resolution in the micro-inch range, at bandwidths as high as 60 kilohertz (kHz). It is ideal for use in applications for fast steering mirrors, magnetic bearing active control, shaft vibration, image stabilization, and adaptive optics. Using a standard 9D connector for reading data, power, and control signals, the system operates from a single power supply with a voltage range of 8-28 volts.

Kamans custom sensors, signal processing, analog to digital converter, and custom calibration system are used to deliver each high precision Digital DIT sensor system. The DDIT is available in three configurations: The Digital System is designed to interface directly to an embedded controller with a master serial peripheral interface (SPI) bus. The ANA (analog) System provides linear analog voltage, with a full range output signal of 0-5 VDC with a null position of 2.5 VDC. The FE System is designed for field-programmable gate array (FPGA) interface for high speed operation, with data rates as high as 128 kHz, 48 bits of data, 60 kHz bandwidth, and no internal firmware.
Kaman sensors are designed and tuned for specific applications. The DDIT system utilizes two matched sensor pairs for optimum operation for each channel. The input signals are filtered and scaled to provide optimum operation, remove common mode noise, and provide a drive signal. The signal processing also provides digital filtering as part of the signal conditioning to reduce signal noise.
Kamans Digital DIT system samples data at 8 times the data rate. The oversampling provides higher resolution at the defined data rate. This results in signal resolution that is eight times better than a system sampling at the Nyquist rate.
For more information about Kamans family of Digital Differential Impedance Transducers, visit http://www.kamansensors.com/pdf_files/KPP_DDIT_SS_FINAL.pdf, or to learn about Kaman Measuring products, visit http://www.kamansensors.com.
###

About Kaman Precision Products Measurement Division
Kaman Precision Products Measurement Division is a worldwide leader in the design and production of high-performance, precision non-contact position measuring systems using inductive, Eddy current technology. Recognizing that each customer has specific individual requirements, Kaman consults with customers to help choose the best sensor, conditioning electronics, and calibration for each application. With more than 40 years of experience, our advanced family of high-precision position sensors is used in hundreds of applications in aerospace, automotive, energy, metals production, metalworking industries, and many others.
Part of Kaman Corporation of Bloomfield, Connecticut, we design and manufacture our products at a state of the art production facility that meets AS9100/B and ISO 9001:2000 quality management system requirements.

Featured Product

T.J. Davies' Retention Knobs

T.J. Davies' Retention Knobs

Our retention knobs are manufactured above international standards or to machine builder specifications. Retention knobs are manufactured utilizing AMS-6274/AISI-8620 alloy steel drawn in the United States. Threads are single-pointed on our lathes while manufacturing all other retention knob features to ensure high concentricity. Our process ensures that our threads are balanced (lead in/lead out at 180 degrees.) Each retention knob is carburized (hardened) to 58-62HRC, and case depth is .020-.030. Core hardness 40HRC. Each retention knob is coated utilizing a hot black oxide coating to military specifications. Our retention knobs are 100% covered in black oxide to prevent rust. All retention knob surfaces (not just mating surfaces) have a precision finish of 32 RMA micro or better: ISO grade 6N. Each retention knob is magnetic particle tested and tested at 2.5 times the pulling force of the drawbar. Certifications are maintained for each step in the manufacturing process for traceability.