LimiFrog Leverages New STM32-L4 Processor in Innovative Prototyping Platform
Integrates many features required to implement smart objects - in under 25 grams
GRENOBLE, France, Sept. 22, 2015 -- How to leverage the remarkably powerful, yet highly energy-efficient STM32-L4 processor recently released by STMicroelectronics for building compelling proofs of concept for smart objects? Project LimiFrog (http://LimiFrog.io), live on Kickstarter until September 30, offers an answer.
In a very small volume, LimiFrog adds many sensors, an oled display, smartphone connectivity and more to this 32-bit, ARM Cortex-M4 based micro-controller. It gives start-up entrepreneurs, makers or high-tech students the means to easily build convincing prototypes when size, weight and integration matter - in fields such as wearables, small robots or Internet of Things devices.
LimiFrog fits in just 1.5"x1.6"x0.47'' and embeds, on top of the above features, a USB 2.0 interface, 64Mbit data storage and a rechargeable battery. An extension port enables interfacing with external systems. Reduced configurations are also available. On the software side, LimiFrog comes with initialisation code and libraries to ease accessibility for beginners, while leaving full freedom to seasoned developers to make the most of the platform. LimiFrog is programmed in C or C++ and MicroPython support is coming. Finally, 3D-printable models of cases will be made available to hold and protect the battery, board and display.
Xavier Cauchy, its creator, explains how LimiFrog was born: "Originally, I had this idea of a configurable fashion accessory. I wanted to build a prototype with an attractive look-and-feel and sufficient processing power. Arduino or RaspberryPi and the likes were either too limited or too power-hungry and needed cumbersome add-on hardware. So I decided to develop my own platform." He adds: "I soon realized that it could be useful for many other projects."
Salient points of LimiFrog's specifications include:
> Multiple sensors: 3-axis accelerometer, gyroscope and magnetomer, atmospheric pressure/altitude sensor, ambient light sensor, proximity and distance detector, microphone
> STM32-L4:
- ARM Cortex-M4 core with Floating Point Unit (FPU) and DSP instructions, up to 80MHz
- Ultra-low power: only 100uA/MHz in active mode, down to 30nA in shut-down mode
> BlueTooth 4.1 interface with integrated antenna
> Full-color 160x128 pixel PM-OLED display
> USB-rechargeable LiPo battery, 500mA.h
> Configurable extension port supports I2C, SPI, CAN, UART, GPIO, Timer/PWM, IT, ADC, DAC...
> Open-source software package: immediate configuration of the board, easy control of on-board hardware resources, pre-integrated USB driver, FAT File System and professional graphics library
> Various real-time OS and kernels can run on STM32
LimiFrog is running a crowdfunding campaign on platform Kickstarter until September 30:
https://www.kickstarter.com/projects/765344573/limifrog-ultra-compact-prototyping-for-iot-and-muc
It will then be available through LimiFrog's website, with customization options.
LimiFrog on the web and social networks:
http://LimiFrog.io
twitter: @LimiFrog
facebook.com/LimiFrog
Featured Product
FLIR Si1-LD - Industrial Acoustic Imaging Camera for Compressed Air Leak Detection
The FLIR Si1-LD is an easy-to-use acoustic imaging camera for locating and quantifying pressurized leaks in compressed air systems. This lightweight, one-handed camera is designed to help maintenance, manufacturing, and engineering professionals identify air leaks faster than with traditional methods. Built with a carefully constructed array of MEMS microphones for high sensitivity, the Si1-LD produces a precise acoustic image that visually displays ultrasonic information, even in loud, industrial environments. The acoustic image is overlaid in real time on a digital image, allowing you to accurately pinpoint the source of the sound, with onboard analytics which quantify the losses being incurred. The Si1-LD features a plugin that enables you to import acoustic images to FLIR Thermal Studio suite for offline editing, analysis, and advanced report creation. Field analysis and reporting can also be done using the FLIR Acoustic Camera Viewer cloud service. Transferring of images can be managed via memory stick or USB data cable. Through a regular maintenance routine, the FLIR Si1-LD can help facilities reduce their environmental impact and save money on utility bills.
