Yale Robotics Engineers Collaborate on Study of Superior Grasping Ability of Primates

Scientists are coming to grips with the superior grasping ability of humans and other primates throughout history.

In a new study, a research team led by Yale University found that even the oldest known human ancestors may have had precision grip capabilities comparable to modern humans. This includes Australopithecus afarensis, which appears in the fossil record a million years before the first evidence of stone tools.


Yale robotics engineers Thomas Feix and Aaron Dollar collaborated on the research with anthropologist Tracy Kivell of the University of Kent and the Max Planck Institute for Human Anthropology, and primatologist Emmanuelle Pouydebat of the French National Centre for Scientific Research. Their findings appear in the Journal of the Royal Society Interface.

Using measurements of the digits' segments, the team created a kinematic model of the thumb and index finger of the skeletons of living primates and fossil remains of human ancestors. It is the first such model of digit movement during precision grasping and manipulation in a broad sample of humans, non-human primates, and fossil hominins.

"The model reveals that a long thumb or great joint mobility alone does not necessarily yield good precision manipulation," said Feix, who is corresponding author of the study. "Compared to living primates, the human hand has the largest manipulation potential, in particular for small objects."

Past studies of precision grasping in primates have focused on digit posture -- contact between the hand and the object -- or the length of the thumb relative to the fingers. The new study introduces a novel method for analyzing the interaction between the thumb and index finger, which is the foundation of stable grasping of small objects.

Manual dexterity is traditionally viewed as a key adaptation that separated the earliest primates from other early mammals. It is thought that such abilities evolved in response to no longer needing hands for locomotion, as well as the mechanical demands of using tools.

Yet there remains debate about the gripping capabilities of early fossil hominins, especially regarding the use of tools. The new study may shed light on some of those issues. For instance, the study suggests that the early human species Australopithecus afarensis may have had greater dexterity than what was required for cutting with a stone, including manipulative and tool-related behaviors that may not have been preserved in the archaeological record.
http://www.yale.edu

Featured Product

Model TR1 Tru-Trac

Model TR1 Tru-Trac

The Model TR1 Tru-Trac® linear measurement solution is a versatile option for tracking velocity, position, or distance over a wide variety of surfaces. An integrated encoder, measuring wheel, and spring-loaded torsion arm in one, compact unit, the Model TR1 is easy to install. The spring-loaded torsion arm offers adjustable torsion load, allowing the Model TR1 to be mounted in almost any orientation - even upside-down. The threaded shaft on the pivot axis is field reversible, providing mounting access from either side. With operating speeds up to 3000 feet per minute, a wide variety of configuration options - including multiple wheel material options - and a housing made from a durable, conductive composite material that minimizes static buildup, the Model TR1 Tru-Trac® is the ideal solution for countless applications.