The marriage of 3-D printing and the aerospace industry is a shining example of a relationship that's mutually beneficial. While it was the innovations of top aerospace manufacturers that ultimately led to today's interest in 3-D printing, it's these same designers and engineers who are now pushing the limits of current technology.

The Aerospace Industry Is Likely to Solve 3-D Printing Problems

Megan Ray Nichols | Schooled by Science

Additive manufacturing, also known as 3-D printing, is on the rise. Having recently found new life among consumers and budding entrepreneurs, the medium is transforming the face of the manufacturing industry at an incredible rate. Despite its accessibility to consumers and professionals alike, it's the aerospace industry that's likely to solve the biggest issues facing 3-D printing today.

 

Managing the Supply Chain

Supply chain management is always an issue in manufacturing. While 3-D printing doesn't eliminate some of the inherent obstacles of the modern supply chain, it does provide us with a new avenue of approach when it comes to sourcing materials, developing product lines and getting our products to the customers' doorstep. It also opens up the door to near-infinite options in customization, which lead to increases throughout the aerospace industry and beyond.

The new supply chain model calls for greater input from the consumer than ever before. As opposed to offering standardized products that require a great deal of overhead to plan, manufacture and deliver, manufacturers can adopt a print-on-demand model. Not only does this reduce the overall cost of finished products, but it also decreases the chance of customer returns, system incompatibility and inefficiency.

 

Monitoring and Controlling Workflow

Despite the increasing amount of consumer control, manufacturers still have to monitor their own workflow. Many aviation and aerospace manufacturers have become used to the power-by-the-hour platform of collecting and analyzing flight data. Introduced by Rolls-Royce in the 1980s, the strategy is highly effective when performing predictive and scheduled maintenance.

To keep up with the growing demands of big data and organizational transparency, the next-gen power-by-the-hour platform incorporates real-time metrics from as many different sources as possible. Manufacturers can use this information in the future to address design flows and introduce upgrades throughout every step of the manufacturing process.

 

Improving Product Quality

Manufacturers who regularly work with molds know the importance of choosing the right mold-release agent. Demolding is a critical step in the process that can mean the difference between a high-quality part and something that is completely unusable, so it's important to complete this phase as efficiently as possible.

In cases where mass production is necessary, aerospace manufacturers can utilize 3-D printers to develop molds that are suitable for limited production runs. This ensures the consistency of the finished products while still letting manufacturers meet tight deadlines and stringent quality standards.  

 

Addressing Obstacles to Post-Processing Efficiency

Post-processing can put a real damper on an otherwise efficient project. While some of this work can be eliminated during the molding process, as mentioned above, there are some shortcomings involved when creating molds or parts with modern 3-D printers.

The aerospace and aviation industries generally require parts that are smooth and aerodynamic. Modern 3-D printers aren't always able to create streamlined finishes or ultrasmooth surfaces, so it's important to choose equipment that meets your needs in the first place.

For the smoothest surface possible, aerospace manufacturers use a 3-D-printing method known as continuous light interface production, or CLIP. The technology offers the precision of traditional stereolithography, or SLA, but at a much faster rate. While the latter is still capable of achieving high levels of surface smoothness, post-processing will likely be required for applications in aerospace or aviation.

 

A Mutually Beneficial Relationship

The marriage of 3-D printing and the aerospace industry is a shining example of a relationship that's mutually beneficial. While it was the innovations of top aerospace manufacturers that ultimately led to today's interest in 3-D printing, it's these same designers and engineers who are now pushing the limits of current technology.

 

About Megan Ray Nichols
Megan Ray Nichols is a blogger and freelance science writer. She posts weekly on her blog, Schooled By Science, about the latest news in science and technology. When she isn’t writing, Megan enjoys reading and hiking.

 
The content & opinions in this article are the author’s and do not necessarily represent the views of ManufacturingTomorrow

Comments (0)

This post does not have any comments. Be the first to leave a comment below.


Post A Comment

You must be logged in before you can post a comment. Login now.

Featured Product

T.J. Davies' Retention Knobs

T.J. Davies' Retention Knobs

Our retention knobs are manufactured above international standards or to machine builder specifications. Retention knobs are manufactured utilizing AMS-6274/AISI-8620 alloy steel drawn in the United States. Threads are single-pointed on our lathes while manufacturing all other retention knob features to ensure high concentricity. Our process ensures that our threads are balanced (lead in/lead out at 180 degrees.) Each retention knob is carburized (hardened) to 58-62HRC, and case depth is .020-.030. Core hardness 40HRC. Each retention knob is coated utilizing a hot black oxide coating to military specifications. Our retention knobs are 100% covered in black oxide to prevent rust. All retention knob surfaces (not just mating surfaces) have a precision finish of 32 RMA micro or better: ISO grade 6N. Each retention knob is magnetic particle tested and tested at 2.5 times the pulling force of the drawbar. Certifications are maintained for each step in the manufacturing process for traceability.