The materials have a non-uniform, crystalline structure, making components built with them much stronger than those built using a standard uniform lattice structure. So much stronger, in fact, that they can withstand seven times the amount of energy ...

New 3D Printing Material Builds Extra-Strength Parts
New 3D Printing Material Builds Extra-Strength Parts

Nicole Hopper, Communications Specialist | Protolabs

A team of researchers from the University of Sheffield and Imperial College London have developed a new family of 3D-printed materials that they named meta-crystals. The materials have a non-uniform, crystalline structure, making components built with them much stronger than those built using a standard uniform lattice structure. So much stronger, in fact, that they can withstand seven times the amount of energy compared to structures built with single-crystal structure lattice materials.

The extra strength comes from the random nature of the lattice in the meta-crystal material. With uniform lattice structures, force from any single direction ripples through the entire piece. The random lattice alignment in the new material, modeled after the atomic structure of a polycrystalline material, means that a crack in any direction is slowed down or stopped when it meets a crystal with differently aligned atoms.

As 3D printing continues to transform manufacturing by allowing product developers to create unique designs impossible to attain through traditional manufacturing techniques, this material advancement is significant. It provides a new and innovative model for future material conception and development. And, the materials could be used in standalone structures, as well as in combination with other materials, expanding the variety of applications in which they’d be useful.

Fully-dense metal test components were built on the University’s Arcam Q20+ industrial-grade 3D printing machine. Photo Courtesy: The University of Sheffield.

 

“This meta-crystal approach could be combined with recent advances in multi-material 3D printing to open up a new frontier of research in developing new advanced materials that are lightweight and mechanically robust, with the potential to advance future low carbon technologies," said Dr. Minh-Son Pham of Imperial College London.

Beyond additive manufacturing, combining physical metallurgy with architected materials provides a new approach to overall material development. For example, engineers would be able to create damage-tolerant materials with strength and durability, while improving the material’s response to external loads.

 

 

The content & opinions in this article are the author’s and do not necessarily represent the views of ManufacturingTomorrow

Comments (0)

This post does not have any comments. Be the first to leave a comment below.


Post A Comment

You must be logged in before you can post a comment. Login now.

Featured Product

FLIR Si1-LD - Industrial Acoustic Imaging Camera for Compressed Air Leak Detection

FLIR Si1-LD - Industrial Acoustic Imaging Camera for Compressed Air Leak Detection

The FLIR Si1-LD is an easy-to-use acoustic imaging camera for locating and quantifying pressurized leaks in compressed air systems. This lightweight, one-handed camera is designed to help maintenance, manufacturing, and engineering professionals identify air leaks faster than with traditional methods. Built with a carefully constructed array of MEMS microphones for high sensitivity, the Si1-LD produces a precise acoustic image that visually displays ultrasonic information, even in loud, industrial environments. The acoustic image is overlaid in real time on a digital image, allowing you to accurately pinpoint the source of the sound, with onboard analytics which quantify the losses being incurred. The Si1-LD features a plugin that enables you to import acoustic images to FLIR Thermal Studio suite for offline editing, analysis, and advanced report creation. Field analysis and reporting can also be done using the FLIR Acoustic Camera Viewer cloud service. Transferring of images can be managed via memory stick or USB data cable. Through a regular maintenance routine, the FLIR Si1-LD can help facilities reduce their environmental impact and save money on utility bills.