IoT solutions are built for many vertical applications such as environmental monitoring and control, health monitoring, vehicle fleet monitoring, industrial monitoring and control, and home automation.

Internet of Things

Eric Wetjen | MathWorks


The above diagram provides a high-level look at an IoT system.

Internet of Things (IoT) describes an emerging trend where a large number of embedded devices (things) are connected to the Internet. These connected devices communicate with people and other things and often provide sensor data to cloud storage and cloud computing resources where the data is processed and analyzed to gain important insights. Cheap cloud computing power and increased device connectivity is enabling this trend.

IoT solutions are built for many vertical applications such as environmental monitoring and control, health monitoring, vehicle fleet monitoring, industrial monitoring and control, and home automation. MATLAB and Simulink products support IoT systems by helping engineers develop and test smart devices, access and collect data in the cloud, and analyze IoT data.

At a high level, many IoT systems can be described using the diagram as shown in Figure 1. The left side of the diagram illustrates the smart devices (the “things” in IoT) that live at the edge of the network. These devices collect data and include things like wearable devices, wireless temperatures sensors, heart rate monitors, and hydraulic pressure sensors. The middle of the diagram represents the cloud where data from many sources is aggregated and analyzed in real time, often by an IoT analytics platform designed for this purpose. The IoT platform collects, processes, and stores data from the smart devices that are often geographically dispersed, and it may have the capability to analyze and take action on the incoming data.

The right side of the diagram depicts the algorithm development associated with the IoT application. Here an engineer or data scientist tries to gain insight into the collected data by performing historical analysis on the data. In this case, the data is pulled from the IoT platform into a desktop software environment to enable the engineer or scientist to prototype algorithms that may eventually execute in the cloud or on the smart device itself.

For more on how MATLAB and Simulink support IoT systems, visit here.

 

 

The content & opinions in this article are the author’s and do not necessarily represent the views of ManufacturingTomorrow

Featured Product

FLIR Si1-LD - Industrial Acoustic Imaging Camera for Compressed Air Leak Detection

FLIR Si1-LD - Industrial Acoustic Imaging Camera for Compressed Air Leak Detection

The FLIR Si1-LD is an easy-to-use acoustic imaging camera for locating and quantifying pressurized leaks in compressed air systems. This lightweight, one-handed camera is designed to help maintenance, manufacturing, and engineering professionals identify air leaks faster than with traditional methods. Built with a carefully constructed array of MEMS microphones for high sensitivity, the Si1-LD produces a precise acoustic image that visually displays ultrasonic information, even in loud, industrial environments. The acoustic image is overlaid in real time on a digital image, allowing you to accurately pinpoint the source of the sound, with onboard analytics which quantify the losses being incurred. The Si1-LD features a plugin that enables you to import acoustic images to FLIR Thermal Studio suite for offline editing, analysis, and advanced report creation. Field analysis and reporting can also be done using the FLIR Acoustic Camera Viewer cloud service. Transferring of images can be managed via memory stick or USB data cable. Through a regular maintenance routine, the FLIR Si1-LD can help facilities reduce their environmental impact and save money on utility bills.