A Swarm Of 3D Printing Spiders Could Build Your Next Home

IDO LECHNER for PSFK:  Watching an object being 3D-printed is a spectacle to behold; the speed at which intricate geometries unfold before your eyes is enough for anyone to reckon that this is the future of manufacturing. While both consumer-grade models and more advanced versions are capable of whipping up objects made from different materials, each with their own aesthetic and subsequent properties, the scale of what can be fabricated is entirely based on the size of the printer at use. For this reason, a research team based out of Siemens’ Corporate Technology’s Princeton campus has developed mobile 3D printers in the shape of spiders, which are both autonomous and capable of working in sync to expedite the printing process. PSFK spoke with Siemens’ Director of R&D of Engineering Livio Dalloro on why the team decided to shape their printers like spiders, the implications such a technique might have on the industry, and how Siemens sees the device unfolding in the foreseeable future.   Cont'd...

Bring 3D printed robots to life with 'Ziro' hand-controlled robotics kit

Benedict for 3Ders.org:   Tech startup ZeroUI, based in San Jose, California, has launched an Indiegogo campaign for Ziro, the “world’s first hand-controlled robotics kit”. The modular kit has been designed to bring 3D printed creations to life, and has already surpassed its $30,000 campaign goal. It would be fair to say that the phenomenon of gesture recognition, throughout the wide variety of consumer electronics to which it has been introduced, has been a mixed success. The huge popularity of the Nintendo Wii showed that—for the right product—users were happy to use their hands and bodies as controllers, but for every Wii, there are a million useless webcam or smartphone functions, lying dormant, unused, and destined for the technology recycle bin.   Full Article:  

Swagway Teardown: What Makes a Safe Hoverboard?

From Andrew Goldberg at Ifixit.org: The board is also smart enough to not drive around without you. Riders need both feet firmly planted on the board or it won’t be going anywhere. Just how does the board know you’re properly mounted? Each foot pad has two infrared sensors—one at the toe, one at the heel. Stepping down on the pad pushes a peg between emitter and receiver. Only when all four sensors are blocked are you ready to roll... ...Those sensor switches live on the backs of the two gyro boards—one for each wheel. These boards are largely responsible for the “smart” part of smartboard. Each board is home to an Invensense MPU6050 6-axis gyroscope+accelerometer, and a GigaDeviceGD32F130 ARM Cortex-M3 32-bit microcontroller (thanks, Ken!). The ARM chips are responsible for reading the infrared switches, controlling the sweet underglow headlights and top-mounted indicator LEDs, and collating and sending data from the MPU6050 to the main board (more on that later)... ( full article )  

This 3D printer can rival standard manufacturing on the factory floor

Lucas Mearian for ComputerWorld:  Start-up Carbon began shipping its industrial-grade 3D printer with the expectation that big-name companies will soon be using it to replace traditional forms of manufacturing. Last year, the Silicon Valley company emerged from quiet mode to announce its technology: a machine that can create objects 25 to 100 times faster than other 3D printers. Carbon is not selling its M1 3D printer outright, but instead is offering it through a subscription price of $40,000 per year, which includes a service and maintenance plan. The three-year-old company based in Redwood City, Calif. said its Continuous Liquid Interface Production (CLIP) printing process can create objects in minutes compared to the hours a typical 3D printer requires.   Cont'd...

With this new 3D printing technique, robots can "practically walk right out of the printer"

Katherine Noyes for Digital Arts:  Imagine you could use a standard 3D printer to create your next robotic assistant. Just snap in a motor and battery, and it's ready to go. That's precisely the scenario made possible by a new 3D printing technique developed at MIT. Liquids have long been a challenge for 3D printing, and they're necessary for hydraulic devices like moving robots. On Wednesday, researchers at MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) announced what they call the first-ever technique for 3D printing robots that can print solid and liquid materials at the same time.   Cont'd...

Greycork Challenges Ikea With A Flat-pack Living Room In A Box

From Dezeen:   Rhode Island furniture company Greycork has created a collection of quick-assembly, flat-pack pieces that are intended "to be a better alternative to Ikea"... ...Each piece is shipped for free in a thin, flat box and is designed to be assembled by the customer in under four minutes... ...The company's first line, the Brooks Collection, featured a folding dining table, coffee table and bench – all made of wood and priced from $500 to $950... ( full story ) ( Greycork site )

This Factory Robot Learns a New Job Overnight

MIT Technology Review:   Fanuc’s robot uses a technique known as deep reinforcement learning to train itself, over time, how to learn a new task. It tries picking up objects while capturing video footage of the process. Each time it succeeds or fails, it remembers how the object looked, knowledge that is used to refine a deep learning model, or a large neural network, that controls its action. Deep learning has proved to be a powerful approach in pattern recognition over the past few years. “After eight hours or so it gets to 90 percent accuracy or above, which is almost the same as if an expert were to program it,” explains Shohei Hido, chief research officer at Preferred Networks, a Tokyo-based company specializing in machine learning. “It works overnight; the next morning it is tuned.”... ( full story )

NASA is sending a 3D printer to space that you can use

Emily Calandrelli for TechCrunch:  NASA is preparing to send its first commercial manufacturing facility to the International Space Station (ISS). The 3D printing company Made in Space has partnered with NASA to send their Additive Manufacturing Facility (AMF) to the space station on a launch scheduled to take place next Tuesday. Users on Earth can pay to use AMF, a 3D printer specially designed to operate in a microgravity environment, to print products on the space station. Once it arrives, Made in Space will be able to command AMF remotely from their headquarters in the NASA Ames Research Park. Spencer Pitman, head of product strategy at Made in Space, told TechCrunch that the company has already secured 20 paying customers for AMF. Their customers include high schools that are hosting space-related design challenges, universities that will print medical research components, and companies that will print commercial parts for satellites and other spacecraft.   Cont'd...


From Nature.com: Ultimately, Goh, a PhD candidate at the National University of Singapore, hopes that the method will help her to find blood vessels that are leaking owing to inflammation, perhaps helping to detect malaria or predict strokes. Crucial to her technique are the virus-sized particles that give the solution its colour. Just a few tens of nanometres across, they are among a growing array of 'nanolights' that researchers are tailoring to specific types of fluorescence: the ability to absorb light at one wavelength and re-emit it at another. Many naturally occurring compounds can do this, from jellyfish proteins to some rare-earth compounds. But nanolights tend to be much more stable, versatile and easier to prepare — which makes them attractive for users in both industry and academia. The best-established examples are quantum dots: tiny flecks of semiconductor that are prized for their beautiful, crisp colours. Now, however, other types of nanolight are on the rise. Some have a rare ability to absorb lots of low-energy photons and combine the energy into a handful of high-energy photons — a trick that opens up opportunities such as producing multiple colours at once. Others are made from polymers or small organic molecules. These are less toxic than quantum dots and often outshine them — much to the amazement of chemists, who are used to carbon-based compounds simply degrading in the presence of ultraviolet light... ( full article )

Mobile Robotic Fabrication System for Filament Structures

The project Mobile Robotic Fabrication System for Filament Structures, developed by ITECH graduate Maria Yablonina, demonstrates a new production process for filament structures. It proposes multiple semi-autonomous wall climbing robots to distribute fiber filament, using any horizontal or vertical surface, or even existing architecture, to support the new structures. Compared to larger scale industrial robots that are limited by position and reach, these robots are enabled with movement systems and a collection of sensors that allow them to travel and interact accurately along typical ground, walls, roofs, and ceilings. One can imagine a fabrication process where an operator arrives to the scene with a suitcase housing all the necessary robots and materials to create a large structure. These agile mobile robotic systems move robotic fabrication processes beyond the constraints of the production hall, exposing vast urban and interior environments as potential fabrication sites.

New Materials for Manufacturing: The Economist's Overview For 2015

From The Economist's Technology Quarterly: This is what some scientists describe as a “golden age” for materials. New, high-performing substances such as exotic alloys and superstrong composites are emerging; “smart” materials can remember their shape, repair themselves or assemble themselves into components. Little structures that change the way something responds to light or sound can be used to turn a material into a “metamaterial” with very different properties... ...When it comes to making chemical bonds, one element, carbon, is in a league of its own; a more or less infinite number of distinct molecules can be made from it. Chemists call these carbon-based molecules organic, and have devoted a whole branch of their subject—inorganic chemistry—to ignoring them. Mr Ceder’s Materials Project sits in that inorganic domain. It has simulated some 60,000 materials, and five years from now should reach 100,000. This will provide what the people working on the project call the “materials genome”: a list of the basic properties—conductivity, hardness, elasticity, ability to absorb other chemicals and so on—of all the compounds anyone might think of. “In ten years someone doing materials design will have all these numbers available to them, and information about how materials will interact,” says Mr Ceder. “Before, none of this really existed. It was all trial and error... ( full article )

NASA, Made in Space think big with Archinaut, a robotic 3D printing demo bound for ISS

Debra Werner for Space News:  Within five years, companies could begin in-orbit manufacturing and assembly of communications satellite reflectors or other large structures, according to Made in Space, the Silicon Valley startup that sent the first 3D printer to the International Space Station in 2014. As Made in Space prepares to send a second 3D printer into orbit, the company is beginning work with Northrop Grumman and Oceaneering Space Systems on Archinaut, an ambitious effort to build a 3D printer equipped with a robotic arm that the team plans to install in an external space station pod, under a two-year, $20 million NASA contract. The project will culminate in 2018 with an on-orbit demonstration of Archinaut's ability to additively manufacture and assemble a large, complex structure, said Andrew Rush, Made in Space president. NASA's selected the Archinaut project, officially known as Versatile In-Space Robotic Precision Manufacturing and Assembly System, as part of its Tipping Points campaign, which funds demonstrations of space-related technologies on the verge of offering significant payoffs for government and commercial applications. Archinaut was one of three projects NASA selected in November that focus on robotic manufacturing and assembly of spacecraft and structures in orbit.  Cont'd...

The making of: BionicANTs

What do ants and Industry 4.0 have in common? What challenges faced the engineers when it came to developing these delicate technology platforms? Take a look behind the scenes and dive into the world of the Bionic Learning Network... ( cont'd )

Riddle of Cement's Structure is Finally Solved

From MIT News: Concrete is the world’s most widely used construction material, so abundant that its production is one of the leading sources of greenhouse gas emissions. Yet answers to some fundamental questions about the microscopic structure and behavior of this ubiquitous material have remained elusive.   Concrete forms through the solidification of a mixture of water, gravel, sand, and cement powder. Is the resulting glue material (known as cement hydrate, CSH) a continuous solid, like metal or stone, or is it an aggregate of small particles... ... Roland Pellenq, a senior research scientist in MIT’s department of civil and environmental engineering, director of the MIT-CNRS lab 2 hosted by the MIT Energy Initiative, and a co-author of the new paper, says the work builds on previous research he conducted with others at the Concrete Sustainability Hub (CSHub) through a collaboration between MIT and the CNRS. “We did the first atomic-scale model” of the structure of concrete, he says, but questions still remained about the larger, mesoscale structure, on scales of a few hundred nanometers. The new work addresses some of those remaining uncertainties, he says. ( full article )

U.S. official sees more cyber attacks on industrial control systems

Jim Finkle for Reuters:  A U.S. government cyber security official warned that authorities have seen an increase in attacks that penetrate industrial control system networks over the past year, and said they are vulnerable because they are exposed to the Internet. Industrial control systems are computers that control operations of industrial processes, from energy plants and steel mills to cookie factories and breweries. “We see more and more that are gaining access to that control system layer," said Marty Edwards, who runs the Department of Homeland Security's Industrial Control Systems Cyber Emergency Response Team, or ICS-CERT. ICS-CERT helps U.S. firms investigate suspected cyber attacks on industrial control systems as well as corporate networks. Interest in critical infrastructure security has surged since late last month when Ukraine authorities blamed a power outage on a cyber attack from Russia, which would make it the first known power outage caused by a cyber attack.   Cont'd...

Records 16 to 30 of 52

First | Previous | Next | Last

Featured Product



Awe-inspiring power and superior flexibility is sheathed within the contoured casing of the HAWK MV-4000. This smart camera builds upon the previous generation by quadrupling processing power and achieving real-time trigger response using an FPGA. Its state-of-the-art algorithms make it an excellent tool for any industry, whether the requirement be code reading, code verification, inspection, guidance, gauging or a combination of all four.