Defending 3D Printers From Hackers

Charles Q. Choi for IEEE Spectrum:  3D printers will become attractive targets for cyberattacks because 3D-printed objects and parts are finding more and more use in critical infrastructures around the world, such as in healthcare, transportation, robotics, aviation, and space, researchers say.

In response to the threat, a trio of techniques to monitor 3D printers for cyberattacks is revealed in a new study from researchers at Rutgers University and the Georgia Institute of Technology.

3D-printing is increasingly playing a part in situations where lives may be at stake, medical prostheses or car parts, for example. However, there is currently no standard way to verify that the 3D-printed parts were made accurately, the researchers say.

“3D printing will be used for manufacturing almost everything: artificial organs, homes, buildings, and even aircraft parts,” says study co-author Mehdi Javanmard, an electrical engineer at Rutgers University in New Jersey. “With wireless connectivity of controllers, unknown and undetectable cyber-physical attacks can result in devastating effects without any way to trace the attacks.”  Full Article:

Comments (0)

This post does not have any comments. Be the first to leave a comment below.


Post A Comment

You must be logged in before you can post a comment. Login now.

Featured Product

Discover the power of Omron mobile robotics.

Discover the power of Omron mobile robotics.

Our fully autonomous intelligent vehicles will help you to transform the way you move materials and route your workflows. Increase throughput, eliminate material flow errors, improve traceability, maximize flexibility and allow your employees to focus on higher level tasks. Unlike traditional AGV's, our mobile robotics navigate using the natural features of your facility and do not require expensive facility modifications or guidance. Our AIV's can adapt to changes in their environment and work freely and safely with your staff. Our mobile robots are intelligent enough to quickly learn their environment and then automatically find the optimal path to where they need to go. They also automatically make adjust for dynamic environments and can work together in fleets of up to 100 robots.