Atomic-scale additive manufacturing techniques could create stronger, lighter, smarter materials

Benedict for 3Ders.org:  Researchers at Oak Ridge National Laboratory have predicted that atomic-scale 3D printing techniques could be used to create stronger, lighter, and smarter materials. Focused electron- and ion-based methods could be used to develop quantum computers, efficient solar cells, and other technology.
In a paper published in the journal ACS Nano, ORNL researchers have reviewed several methods of atomic-scale 3D nanofabrication, suggesting ways in which the processes could be refined in order to perfect the art of creating material at the atomic scale. While traditional 3D printers deal with shapes divided into layers which are then turned into physical objects, the process known as “directed matter” involves fabricating structures atom by atom. Scientists believe that this form of additive manufacturing could allow manufacturers of the future to create near-perfect materials with incredibly precise structures.  Cont'd...

Comments (0)

This post does not have any comments. Be the first to leave a comment below.


Post A Comment

You must be logged in before you can post a comment. Login now.

Featured Product

New M12 A-Coded Connectors from binder are now Ecolab and FDA certified

New M12 A-Coded Connectors from binder are now Ecolab and FDA certified

binder USA, LP, has expanded the M12 product family with the addition of the M12 A-Coded Connector, which is now certified for both Ecolab and FDA Code of Federal Regulations (CFR) Title 21 standards. The M12 A-Coded connectors are extraordinarily durable and IP69K-rated, ideal for harsh-duty and washdown applications in the food and beverage, pharmaceutical, and chemical industries. Available in 3, 4, 5, 8, and 12 contacts, the high quality stainless steel locking rings (V4A) and gold contact plating can also withstand UV exposure and shock and vibration.