Atomic-scale additive manufacturing techniques could create stronger, lighter, smarter materials

Benedict for 3Ders.org:  Researchers at Oak Ridge National Laboratory have predicted that atomic-scale 3D printing techniques could be used to create stronger, lighter, and smarter materials. Focused electron- and ion-based methods could be used to develop quantum computers, efficient solar cells, and other technology.
In a paper published in the journal ACS Nano, ORNL researchers have reviewed several methods of atomic-scale 3D nanofabrication, suggesting ways in which the processes could be refined in order to perfect the art of creating material at the atomic scale. While traditional 3D printers deal with shapes divided into layers which are then turned into physical objects, the process known as “directed matter” involves fabricating structures atom by atom. Scientists believe that this form of additive manufacturing could allow manufacturers of the future to create near-perfect materials with incredibly precise structures.  Cont'd...

Comments (0)

This post does not have any comments. Be the first to leave a comment below.


Post A Comment

You must be logged in before you can post a comment. Login now.

Featured Product

Russell Finex - Reclaiming and recycling additive manufacturing powders

Russell Finex - Reclaiming and recycling additive manufacturing powders

The Russell AMPro Sieve Station™ guarantees the quality of your additive manufacturing (AM) powder, and has been designed to provide optimum sieving efficiency, ensuring your powder is ready for use or reuse as and when you require it. With a simple one-button operation and mobile design, this automated check screener ensures your powder at every stage of the process is qualified for use quickly and safely. The flexibility of the Russell AMPro Sieve Station™ means you can use the system for numerous powder handling tasks - being a modular design ensures the machine can be configured to meet your exact requirements.