As the benefits of main AI elements such as Machine Learning, Data Analysis, and Predictive Analysis are undeniable, what are the few biggest challenges that companies may face while introducing AI to their day-to-day operations?

Challenges of AI

Article from | Andea Solutions

Artificial Intelligence may be one of the most impressive human achievements and offers endless opportunities for companies willing to foster this technology. As the benefits of main AI elements such as Machine Learning, Data Analysis, and Predictive Analysis are undeniable, what are the few biggest challenges that companies may face while introducing AI to their day-to-day operations?

 

Apprehensive employees 

In the AI project’s initial stages, the key project stakeholders need to inform the business that the technology is not perfect and that its introduction might create some temporary inconveniences. Once the AI application gets deployed, it needs to be used and trusted to be continually improved. Unfortunately, learning and developing new skills and breaking up with old habits don’t come easily for some employees. During the project initiation phase, the company must provide lots of guidance and training to its employees on the benefits and opportunities that AI can deliver. That will help ensure that the employees understand the need and see how they can personally benefit from AI.

 

Employees do not have to worry about being replaced by AI and machines. Technology needs to be viewed as an enabler and not a competition to employees’ livelihood – claims Jeremy Mendoza, Director of Sales – North America at Andea. – Let’s take a look at Andea’s new application – Manufacturo eKnows. It is an AI-based system capable of analyzing historical maintenance data and machine and service manuals to provide operators with relevant information when needed. And when one may worry that it will replace human work – it is the opposite. It enables shopfloor Operators to be more self-sufficient and streamlines communication between the production and maintenance teams. So, AI in this example may help improve a company’s results. 

 

Disconnected systems

Fragmented systems are always an issue in any company. Systems may vary locally and globally within the same company and may not always cooperate in one eco-system. Lack of system interoperability may be an obstacle when deploying AI as these systems generate data that is an essential component of any AI solution.  It is vital to know or predict system standards, frameworks, and possibilities. Using this information, a company should define how these systems can supply the required data and communicate with the AI framework. 

 

Data

Over the past few years, companies have generated more data than ever before. Data is the food that fuels AI, and manufacturing companies need to access this data efficiently.  We can show past scenarios and reoccurring issues and predict future occurrences using algorithms and patterns by analyzing this data. Before introducing AI in your company, the data access constraints should be minimized, ensuring that the relevant data sources and databases are easily accessible. Once you have access to the appropriate and comprehensive data lake, meaningful analysis and actionable insights can be derived. The proper data use can become an excellent opportunity for the company to win the race against its competitors. It is also imperative to remember that having access to the most massive data quantities is not the deciding factor for a successful AI project. It is more about selecting relevant data for the respective AI application, cleaning it up, and applying the right analytical methods against that data. 

 

Need for Real-Time Response

Even with sufficient and complete AI data, you may face some technological constraints. Many applications can be significantly sensitive to latencies; for instance, predictive maintenance applications will only work when auto alarm mechanisms and rapid response are built into the overall process of handling predictive maintenance issues. That is especially true in high volume, fast-moving production. Decisions need to be made in seconds, and this is where ultra-fast computing, together with the proper response process, can make a difference.

 

Tech Skills and AI Readiness

Before you welcome AI into your company, do the groundwork. Without the right knowledge of AI implementation best practices based on current systems and employee’s skillsets, you may be setting your company up for failure – says Jeremy Mendoza. –  Focus on continuous training and development for your employees. They are the real core of your company so that in the end, the knowledge within the AI solution will continue to grow only if your employees are knowledgeable and support the program.

 
 
The content & opinions in this article are the author’s and do not necessarily represent the views of ManufacturingTomorrow

Comments (0)

This post does not have any comments. Be the first to leave a comment below.


Post A Comment

You must be logged in before you can post a comment. Login now.

Featured Product

OnLogic Helix 401 Fanless Hybrid-Core Computer

OnLogic Helix 401 Fanless Hybrid-Core Computer

OnLogic's Helix 401 Compact Fanless Computer offers scalable, high-performance processing and can simultaneously drive multiple 4K displays, making it the ideal computing platform for many automation and IIoT applications. The Helix 401 has the horsepower to drive mission-critical applications while requiring less than 28W of power, and is small enough to fit in space-constrained locations or enclosures. It can be configured with a range of Intel® 12th generation processors, up to a Core i7 and has Intel Iris® Xe graphics onboard.