The U.S. Naval Research Laboratory Adds 3D Metal Printing by Concept Laser to Enhance Research and Development Capabilities

This is NRLs first 3D metal printer that is laser powder-bed based and will strengthen their focus on additive manufacturing.

The U.S. Naval Research Laboratory (NRL) is the Navys full-spectrum corporate laboratory, conducting a broad-based program of scientific research and development for maritime application related to oceanic, atmospheric, and space sciences. They have selected Concept Lasers 3D metal printing technology for rapid prototyping and materials research. This is their first laser powder-bed metals machine.

"We require a wide range of Additive Manufacturing (AM) capabilities, ranging from quality monitoring to process parameter development, and need an architecture conducive to that research and development effort," said Dr. Charles Rohde, NRL Acoustics Division.
NRL will be using Concept Lasers M2 cusing machine to print in Stainless Steel. Along with the machine, they will be using QM Meltpool 3D to monitor the quality of their metal applications, inspecting the part as it grows. This will also help them identify any design defects and if an application is on the edge of acceptability. Additionally, they will be using CL WRX Parameter 2.0 to freely design and develop custom parameters.
"It is very exciting that the U.S. Naval Research Laboratory is bolstering their focus on metal additive manufacturing. There are so many advantages of 3D metal printing that our defense strategy could benefit from, including reduced lead time, less material waste, and printing complex geometries with no required assembly. NRL has a history of over 90 years of innovation in naval power and we look forward to hearing how they will use 3D metal printing to break boundaries," states John Murray, President and CEO of Concept Laser Inc.
Additive manufacturing involves taking digital designs from computer aided design (CAD) software, and laying horizontal cross-sections to manufacture the part. Additive components are typically lighter and more durable than traditional forged parts because they require less welding and machining. Because additive parts are essentially "grown" from the ground up, they generate far less scrap material. Freed of traditional manufacturing restrictions, additive manufacturing dramatically expands the design possibilities for engineers
About the U.S. Naval Research Laboratory
The U.S. Naval Research Laboratory provides the advanced scientific capabilities required to bolster our country's position of global naval leadership. The Laboratory, with a total complement of approximately 2,500 personnel, is located in southwest Washington, D.C., with other major sites at the Stennis Space Center, Miss., and Monterey, Calif. NRL has served the Navy and the nation for over 90 years and continues to advance research further than you can imagine. For more information, visit the NRL website or join the conversation on Twitter, Facebook, and YouTube.
ABOUT CONCEPT LASER
Concept Laser GmbH is one of the worlds leading providers of machine and plant technology for the 3D printing of metal components. Founded by Frank Herzog in 2000, the patented LaserCUSING® process - powder-bed-based laser melting of metals - opens up new freedom to configuring components and also permits the tool-free, economic fabrication of highly complex parts in fairly small batch sizes.
Concept Laser serves various industries, ranging from medical, dental, aerospace, toolmaking and mold construction, automotive and jewelry. Concept Laser machines are compatible with a diverse set of powder materials, such as stainless steel and hot-work steels, aluminum and titanium alloys, as well as precious metals for jewelry and dental applications.
Concept Laser Inc. is headquartered in Grapevine, Texas and is a US-based wholly owned subsidiary of Concept Laser GmbH. For more information, visit our website at http://www.conceptlaserinc.com.
LaserCUSING® is a registered trademark of Concept Laser.

Featured Product

ResinDek® TRIGARD® ESD ULTRA FOR HIGH-TRAFFIC ROBOTIC APPLICATIONS

ResinDek® TRIGARD® ESD ULTRA FOR HIGH-TRAFFIC ROBOTIC APPLICATIONS

To maximize the productivity of an autonomous mobile robot (AMR) or automatic guided vehicle (AGV) deployment, it's critical to create the optimal environment that allows the vehicles to perform at their peak. For that reason, Cornerstone Specialty Wood Products, LLC® (www.resindek.com) created the TriGard® ESD Ultra finish for its ResinDek® engineered flooring panels. The TriGard ESD Ultra finish is ideal for high-traffic robotic applications characterized by highly repetitive movement patterns and defined travel paths.